Applied Aspects of Information Technology 2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

UDK 004.912

Nataliia O. Novikova', Senior Teacher of the Department“Technical Cybernetics and Information
Technology named Prof. R.V. Merkt”, E-mail: nataliya.novikova.31@gmail.com,

ORCID: 0000 — 0002 — 6257 — 9703

'Odessa National Maritime University, Mechnikov, str. 34, Odessa, Ukraine, 65029

CHANGING AND TRACING OF SOFTWARE REQUIREMENTS
AT LEVEL OF CONCEPTUAL CLASSES

Abstract. The article explores the problem of automating the description of Use Cases at the stage of forming requirements in
the design of software products. Methods for correcting the model of conceptual classes in connection with changes in the
formulation of various items of scenarios for Use Cases are proposed and tracing of each item of the Use Case scenario in
conceptual classes and their methods and attributes. Changing requirements at the level of use cases description means deleting
previously compiled items of the scenario and/or adding new ones. Deleting a Use Case is considered to be a consecutive deletion of
all of its items, and editing a scenario item as a deletion followed by a new edition. The methods of removing all types of scenario
items of the proposed classification in various possible situations are considered: the class created earlier was not used in other
items of this or other use cases; the class created earlier was not used in other items of this or other use cases, but the function
contained in the class has references to other functions; the class created earlier was used in other items of this or other use cases
and the function contained in the class has no reference to other functions; the class created earlier was used in other items of this or
other use cases and the function contained in the class has references to other functions. Methods have been developed for
determining the relationships of Use Case and its item with classes, their methods and attributes that implement this item (direct
tracing), and determining the relationship of any data element or class method with various Use Case and their items (reverse
tracing). The proposed method for conceptual classes correcting allows automatic deleting various items in scenarios while
maintaining the correct presentation of conceptual classes. It is shown that there is a significant reduction in time for correcting
classes in an automated mode compared to the traditional manual mode. The tracing method also significantly reduces the time it

takes to find the connections between the Use Case.

Keywords: use cases; scenarios; models; conceptual classes; tracing

Introduction

Use Cases (UC) is a widespread method for
detailed recording of functional requirements for a
software product being designed [1-2]. UCs forms
the basis of an object-oriented approach to software
development [3-4] and is supported by the UML
language [5-7]. The whole process of identifying
and formulating requirements is long, very
responsible, and time-consuming [8-9], and this
especially applies to the description of UC [10].
Such work is usually carried out by a system analyst
[11], who should not only have in-depth knowledge
of information technology but also be a good
psychologist and organizer [12-13].

Automation of tasks solved by a system analyst
can significantly improve the quality of
requirements for a software product; reduce costs
and time for their preparation.

Literature analysis

Use Cases are written in the language of the
subject area. The terms used in their preparation will
be further displayed in user interfaces, in the names
of classes and their methods. Therefore, studies on
the automation of the compilation of a domain terms
glossary deserve attention [14-15]. Also in recent
years, studies have appeared on the automation of
UC descriptions. In [16], a classification of items of

© Novikova, N. O., 2020

UC scenarios were proposed, on the basis of which
tools were developed to automate the compilation of
UC descriptions. As a continuation of this line of
research, it is proposed to create models of
conceptual classes (MCC) in parallel with the UC
description. In [17], it was proposed to consider UC
in the form of two models — the description model
and the design model, which allows the formation of
the MCC.

Changing requirements at the first stages of
software design is a common occurrence [18,19], so
it becomes necessary to display the changes made to
the UC description and, in parallel, to the design
model. Existing means of displaying project
documentation [20-22] wuse various indexing
methods to search for information. In the best case,
they allow to visually trace the path from changing a
certain requirement to the group of classes that
implement it (direct tracing), or the path from
changes in some classes to the requirements on the
basis of which these classes were created (reverse
tracing).

If we are talking about automating the
construction of a model of conceptual classes in the
process of compiling UC, then this is clearly not
enough. Changes introduced into the requirements
should be automatically processed and lead to the
adjustment of a previously compiled model of

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

DOI: 10.15276/aait.01.2020.2 393

mailto:nataliya.novikova.31@gmail.com

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

conceptual classes, what's one has not been done
so far.

Problem statement

Changing requirements at the level of use case
description means deleting previously compiled
items of the scenario and/or adding new ones. In
order to add a new item, it is necessary to qualify it
and perform the corresponding algorithm.
Algorithms for adding various types of scenario
items are described in detail in [16]. The problem is
the deletion of an existing item of the scenario since
its implementation in the form of conceptual classes
can service not only this item of the script, but also
other items of the scenario in question, and possibly
other scenarios.

To fix this problem, the two tasks should be
solved.

1. To develop a method for adjusting the MCC
in connection with changes in the wording of
various items of UC scenarios.

2. To develop a method for tracing each item in
a UC scenario into conceptual classes, their methods
and data, as well as a method for tracing any
function or given class into the corresponding items
in UC scenarios.

Method for conceptual classes adjusting

We will construe the removal of the UC, the
removal of the UC item, the change of the UC item
as changes of requirements. All these changes come
down to deleting one item of the scenario. To do
this, we will consider the removal of UC as a
sequential deletion of all of its items, and editing a
script item as a deletion with subsequent compilation
in a new edition. Thus, it is necessary to review the
removal of all types of items proposed in [17]:

— Create. The user commands the system to
create some object which can contain data used both
within the framework of this UC and other UC.

— Enter the data. The user enters into the
system a series of data, for which the system usually
must check the possibility of their use for further
work.

- Request a value. The user asks the system for
some data. This is usually followed by a user's
assessment of the data.

— Request a list. The user orders a list (for
example, data, services or documents) for a further
selection of some elements from it.

— Select from the list. The user selects the
necessary data or service (document) from the list.

— Enter the service (document). The user
enters the necessary service or document, which
determines the further sequence of actions. For
example, a payment method by bank card.

— Repeat the actions. The user has the
opportunity to go to the above items of the scenario,
or refuse to repeat them.

— Complete the UC. The item provides for the
successful completion of the UC, which may be
accompanied by the preservation of certain data, the
formation of a report, documents, etc.

We will use the class model proposed in [17].
All classes included in the MCC are represented by
the set

Me ={c},)
Each class (prototype) is represented by a tuple

¢ =<tc,cName, z,uName nP, mData, mFunc> (2)

where: tc ="class"|" prototyp";

— cName is the name of the class;
— uName nP is the name of the UC and the
number of the item where the class was created:;

— 7 ="u"["s" is the lifetime of the class objects
(during the execution of the use case — u, or during
the operation of the system — s);

— mData is the set of attributes that the class
contains;

— mFunc is the set of functions (methods) that
the class contains.

Elements of a set mData are represented by a
tuple

data=< dNametd, ref >, 3

where: dName is the name of the attribute;
td ="si'["ar"["sc"|"ac"is the type of attribute
(single wvalue, array, calculated single value,
calculated array);
ref ={< fName, uName nP >} are references
to functions (methods) using the attribute;
where: fName is the name of the method;

uName nP determine the UC and the item at
which data use occurred.
The class method is defined in the following
way
func=< fName,oData, mArgs miData

4)
mCData, mRfFunc>

where: oData is the value returned by the method;

if oDana ="0", then the method returns nothing;
oData ="b", then the method returns a

Boolean value, which doesn't have to be saved in the

object after the completion of the method. In other

cases, the name should be included in the set

394

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

mData with the typetd ="sc"|"ac" and a reference

to this method,
mArgs is the set of arguments of the method;

mliData is the set of class attributes that take on
new values;

mCData is the set of class attributes used in the
calculations of this method;

mRfFunc is the set of links to external functions

(methods of other classes) used in this method.
Each element of the set mRfFunc is represented

by a tuple:
— mRfFung =<cName;, func; >,
where: cName; is the class to which the external
function belongs (in the general case, several
external functions may belong to the same class);
func; is the class cName; function referenced

by the function func.

1. Deleting an item of “Create” type
In accordance with [17], the “Create” item provides
for the creation of a class in accordance with the
following description:
1 =<"c|ass",cName1, 71,UName;, nP;, mData, , func1 >,

where: cName, is the name of class;
uName, nPR, is the name of the use case and the
item deleted;
mData
initialization;

— class attributes generated after

funcl =< fName,"0", mArgs miData mCData, &

is the initialization function of the class object
(usually a constructor),

oData="0" means the method isn't returning a
value;

mArgs=mData’;

mlData= mData, ;

mCData may differ from mArgs, if the default
data exists;

mOFunc=< means when creating an object,
external functions are not used.

When deleting an item, two situations are
possible.

A. The previously created class was not used at
other items in given UC or in other use cases. In this
case, it should have only one function — funcl, i.e.

mFunc\{funcl} =<.

This allows you to remove the class ¢, from a
set of classes.

Mc := Mc \{c, }. (5)

B. The previously created class was used in
other items of the corrected one or other use cases.
Then it is necessary to present the class c, in the

form of a prototype ¢’ and ensure that all items of
the scenarios in which this class prototype is used
are executed.

Let's define the changes you need to make to
the class c, to get the class c’.

The class name and the lifetime of the class
objects must remain unchanged:

cName’'=cName, and ¢’ =1;.

We define the set of functions that should work

with the prototype of the class:
mFunc’ = mFunc \{ funcl}.

References in class attributes to a deleted
function will be also automatically deleted when a
new set of class ¢’ attributes is generated.

To ensure the operation of each function in the
class ¢’ the necessary attributes must be stored. We
represent the set of functions mFunc in the form:

mFunc:{funcj}, j=1n,
where: n is the number of functions belonging to
this class.

Then the attributes necessary for the operation
of all functions from mFunc will be defined as

n
mDat' = U mCDataj .

Y (6)

When creating a class, you must specify the
item and Use Case where it was created. When
>creating a prototype of a class, the item and UC
should be indicated where it was in demand. Since
the method of constructing conceptual classes does
not store the chronology of their creation and
modification, the creation of a prototype can be
attributed to any UC in which this class is used, and
to the first item in which access to ¢’ occur. We

write the selection conditions as follows: if
Jdata; e mData’| < fName,uName, ;,nP;; >eref;,

then we take the uName’ = uName, ;

i

To determine the item number in UC, we form
a set of links to functions ordered by increasing item
number:
mRf — sort[mRf],

then nP'=nPR,
where: nP, belongs to the first tuple of mRf

Finally, the class ¢’ will be presented as
¢’ =<"prototype",cName’,z',uName’.
nP’,mData’, mFunc’ >

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

395

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

2. Deleting an item of “Enter the data” type

The “Enter data” item provides for the action
with the data of a previously created class
(prototype), as well as a possible verification of the
accuracy of the data entered.

We denote the UC asuNamél, scenario item as
nPl, the set of data entered asmData, the
corresponding function as funcl, and the class
containing the data and the function asc; .

When deleting an item, the following situations
are possible.

A. The class c, is not used in other items of this
UC or other UCs, and the function funcl has no
references to other functions. This condition is met if
for each data element of the class c,

data =<dName,td, gH, gL, ref >,
all function references
ref ={< fName,uName, nP >}
Contain only names uNamel and nP1:

Vdata; e mDatal|uName, ; = uNamel

/\nF’i’j =nPl. ()

In this case, we remove the class c, from the set
of classes

Mc :=Mc\{c, }

B. The class c, is used at other items of the
corrected UC or other UCs, and the function funcl
has no references to other functions. In this case,
condition (7) is not met and it is necessary to ensure
the fulfilment of all items of the scenarios
(nP, #nPL), in which this class is used.

We define the changes that need to be made to
the class c, to get the class c’, that matches the UC
descriptions with the deleted item nPL.

The class name and the lifetime of the class
objects must remain unchanged:

cName’=cName and 7' =7,
The function funcl, except for the item nP1,

can be used in other items. Therefore, we perform
selective deletion of references.
If

Jdate; e mDatal|uNamg ; =uName A nP, ; =nPL,
then ref; ; is removed from the set ref; .

If the condition
Vdata; € mDatal|uNameg ; = uNamelAnR, ; #nPl1
Is met, then we delete the function funclfrom the

set of function of class ¢’ :
mFurc’ = mFunc\{funcl}.

If we represent the many functions mFunc of
the class ¢’ as
mFunc={func;}j=1n.

Then we can determine the data necessary for the
operation of all functions from mFunc:

n
mDat’' = U mCData; .

j=1
Finally, the class ¢’ will be presented as
¢’ =<" prototype",cName’, 7', uName’,

nP’,mData’, mFunc’ >.

C. The class ¢, was not used in other items of
this UC or other UCs, and the function funcl has

references to other functions. In this case, it is not
enough to delete the class ¢, . We must also delete

the “traces” of calling other functions from the
function funcl.

In accordance with (4), the deleted function has
the form
funcl =< fName oData, mDatdl,

mIData mCData, mRfFunc>
If any function func, from the set mRfFunc
was created in the item nP1 UC uNamel in a
certain class ¢; and is not used at other items in the

scenarios, then it should be deleted. If the class C;

contains only a function func,,, that is used only in
the item nP1 UC uNamel, then the class ¢; must

also be deleted. If func, used in other items, then

only the reference to the item and UC should be
deleted.

Let us successively analyze each element of the
set of references mRfFunc to functions of other

classes.
Consider some element of the set

<cName;, func,, >. The fulfilment of the condition

3 data; e mData; | fName; , = func,,. fName A
uName; ; =uNamelAnp, ; =nP1
Indicates that the function func, was created in
item nP1 UC uNameél. If this condition is not met,
then the function fung from the class c; is not
deleted, but a reference to it is only subjected to this
< func,,. fName, uNameL, nP1>}.

If condition (8) is met, then the use of the
function func,, by other points in the scenarios

should be determined. If the condition

396

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

3 data; e mData; | fName; , = func,,. fName A

(9)

uName; ; #uNamelAnp ; #nP1

Is met, then the function fung, from the class c; is

not deleted, but a reference to it only undergoes this.
If condition (8) is met and condition (9) is not,
then the function func, is deleted from the class c,

mFunc; == mFunc; \{funcm}.

If the class c; does not contain other functions
(mFunc; =), then the class is deleted c;:
Mc = Mc \{c;}

Function verification operations are repeated
for all elements of the setmRfFunc.

Regardless of the results of the analysis
mRfFunc, the last corrective action is to remove the
class c; :

Mc := Mc \{cl}.

D. The class c, is used at other items of the

corrected UC or other UCs, and the function funcl

has references to other functions. In this case, all
operations provided for by options B and C are
performed, except for deleting the classc; .

3. Deleting an item of “Request a value” type

When designing the “Request a value” item, a
previously created class or a previously existing
class may have been used. In the first case, we need
to consider the possibility of deleting this class, in
the second — only deleting the corresponding
function and data.

We denote the UC considered as uNamél, the
scenario item as nP1l, the set of requested data
values as mData, the corresponding function as
funcl, and the class containing the data and the
function as c;.

When deleting an item, the following situations
are possible.

A. The class c,is not used in other items of this
UC or other UCs, and the function funcl has no

references to other functions. In this case, all the
actions provided for in subsection 2.A are
performed.

B. The class c, is used at other items of the
corrected UC, or other UCs, and the function funcl
has no references to other functions. In this case, all

the actions provided for in subsection 2.B are
performed.

C. The class c, is not used in other items of this
or other UCs, and the function funcl has references

to other functions. In this case, all the actions
provided for in subsection 2.C are performed.

D. The class c, is used at other items of the
corrected UC, or other UCs, and the function funcl

has references to other functions. In this case, all
operations provided for by options 2.B and 2.C are
performed, except for deleting the class c,.

4. Deleting an item of “Request a list” type

The process of deleting this item does not differ
from that considered earlier in section 3. However, it
needs to be borne in mind that the item “Select from
the list” should follow the item “Request a list” in
the UC scenario. Therefore, in the future, this item
should also be deleted.

5. Deleting an item of “Select from the list”
type

The scenario item provides for entering a value
selected by the user from the list.

The operation of deleting this item is similar to
the operation “Enter the data” type. However, it's
necessary to note that this item in the UC scenario
must be preceded by the “Request a list” item.
Therefore, correcting one of these points should be
considered as deleting both.

6. Deleting an item of “Enter the service”
type

The operation of deleting this item is similar to
the operation “Enter the data”. However, unlike the
“Enter the data” item, the service entered can
determine the choice of one or another scenario of
working with the system. Therefore, deleting this
item requires a detailed analysis of all further items
in the main scenario and extension scenarios.

7. Deleting an item of “Repeat the actions”
type

The implementation of the “Repeat the actions”
scenario item does not add new functions and
classes to the kernel of the system since it can be
implemented by user interface classes. Therefore,
the removal of this item does not lead to the
adjustment of the MCC, however, it significantly
changes the sequence of execution of the scenario
items.

8. Deleting an item of “Complete the UC”
type

When creating this item,
operations may have been performed:

the following

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

397

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

— reception by an existing object of some data
mData , that did not require analysis;

— registration of certain data mData, in existing
facilities;

— creation of a document containing certain data
mDatas.

Therefore, the process of deleting an item falls
into three stages.

8.1 Deleting the data. We denote the UC under
consideration asuNamel, the scenario item as nP1,
the set of input data as mData, the corresponding
function as funcl, and the class containing the data
and the function as c;.

Since the class ¢, was not created in nPlitem,
the question of deleting the class ¢, is not
considered. It should be possibly needed to remove a
function funcl from the set of class c, functions
and data mData from the set of class c, data.

If the condition

Jfuncle mFung | ref,; uName= uNamel A

10)

ref,; .nP = nPl

Is met then the function funcl is not deleted, but
only the link to its use in uNamél and nP1subjected
to this:
< fNamel, uName, nP1>.
If condition (10) is not satisfied, then the
function is deleted from the class c;:
mFund ;= mFund \{funcl}

and the class data is adjusted:

n
¢;:mDatdl= U mCData;,

j=1
where: mCData; is determined from the remaining

functions
mFunc={func;}, j=1n.

8.2 Cancelling of data registration. When
creating this item, the data to be registered was
obtained from one object and registered in others.
We denote the UC considered asuNamel, the
scenario item as nP1, the set of data extracted from
the class c, object as mData, the corresponding
function as funcl. Data from the set mData can be
registered in several objects of different classes.
Therefore, when cancelling registration, it may be
necessary to delete data from the classes where they
were registered; and to delete the corresponding
functions of these classes and the function funcl.

The function that performs registration has the
form

funcl=< fName,"0",, J, mData,,

{c;..func, }> '
Consider the correction of one of the classes
(¢;), in which registration was performed. For

(11)

registration, a function fName, of this class was
used

func, =< fName,_,"0", mArgs mIDatg, mCData, & >,
where: mArgse mData, is the part of the registered

data.
We analyze the function

of its use in other items and UC:

func, in the context

3func, e mFunc; [ref;; uUName=uNamel A

(12)
ref;;.nP=nPL.

If the condition is true, then the function func,
is not deleted. From the set of Cj class references

ref only the element < fName, ,uName, nPl1>,
representing the reference to the deleted item in the
scenario is subjected to deletion.

If condition (12) is not satisfied, then the
function func, must be deleted

mFung; :=mFunc; \{func, }

and the class data must be corrected ¢ i

n
mData; = UmCDats,,

i=1
where: mCDatg, is determined from the remaining
functions
mFung; ={func}, i=1n.

The considered sequence of operations should
be performed for each element from the set
{<¢;,.func, } from (11).

8.3 Cancelling the document creation. The
creation of the document was performed by one
class (c,), that existed previously. The function that
creates the document (funcl) was also used once
and did not enter new data into the class. Thus,
cancelling the creation of a document is limited to
deleting a function funcl from class c,:

mFung = mFung \{funcl}/.

9. Tracing Method Depending on the task
being solved, direct or reverse tracing may be
required. By direct tracing, we mean the definition
of the connections of UC and its item with classes,
their methods and data that implement this item

(Fig. 1).

398

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

uC
uName Class c1 Class c2
1
2 dlil — d21
d12
1 —=| function11
L function21
k
Fig. 1. Tracing from UC and its item to classes, methods and data
By reverse tracing, we mean the element or class method with various UC and
definition of the connection for any data their items (Fig. 2).
Class c1 Class c2
ucC 1
- d21 = ublame
> d11 1
2
= function11]
o function21 — | X
t S 1";
— function1z =
oUC 2
uMame
1
= 3
K
il

Fig. 2. Tracing from a class method and data to UC and their items

9.1. Direct tracing
We denote the UC under consideration as
uNamd, the scenario item as nPl. Let Mct
represent a set of classes that are used to
implement nP1 (Mct e Mc).
Let us represent the result of Trd tracing as a
tuple
Trd =<UNamé€l, nP1, Mct >.
Each class from Mct will be presented as
¢ =<cName mData mFunc>
We will analyze the data of each class from Mc.
If, for some class c¢; e Mc in the data set

mData there exists an element
Jdata, e mData |ref, ;.uName= Namel A
ref, ;. nP=nP1 ’
then the following operations must be performed

A) If
3c, € Mct | c,.cName=c;.cName,

Then m DR=ma Ru{a .%
mFung :=mFung U{ref, ;.fName}.

B) If condition (13) is not met, then a class
¢, =<¢;,{data, },{ref, ;.fName}>. is created

9.2. Reverse tracing

For reverse tracing, it is necessary to determine

the UC and their items from the datum dName
belonging to class c,. Let's represent the result of

Trd tracing as a tuple
Trr <tData, mUC >,

where: tData=<c,,dName>,

(13)

and

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

399

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

—mUC is a set of entries for each UC. Each entry
has the form
<uNamemNP > .

Here uName is the name of UC;

MNP is a set of entries of the form
<nP, mFunc>, where mFunc is the set of functions
directly or indirectly using data.

We define a set of functions from the class c,, using
dName.

Since each datum is represented by a tuple
data=<dNametd, gH, gL, ref >, then a set of
references ref allow us to define all functions using
dName:

(14)

ref ={< fName, uName nP >}.
We transform each element of the set ref

an element of the set mUC (14):
<uName{nP,{c,.func}}>.

Since functions of other classes (not c,) can use
dName through function class c,, we define these
functions by parameter mRfFunc (4).

If for some function of the class c; the
condition

3func; ; e mFung |c;. fung, e mRfFung ; >, is

met then we introduce a new element into the set
muUC

into

<uName{nP,{c;.func;}} >,

where: uName and nP are given from definition of
class c; in accordance with (2).

result of Trd tracing as a tuple

After analyzing all classes, it is desirable to
combine some elements of the set mUC . If there are

two entries, <uName, mNP, > and
<uName;, mNP; >, for which uName, =uName;
then they are combined into one

<uName;, mMNF, UmMNP; >.

If there are two entries in the set mNP,
<nR,mFung > and <nP;,mFunc; > for which

<nPk =nP; > then they are combined into one
<nR;, mFunc; umkFunc; >.

Testing the results of the study

By testing we mean two types of work:

— checking the correctness of changes in the
structure of classes when editing various items of the
scenario;

— assessment of the reduction of time for
changing the structure of classes in the conditions of
application of the proposed method of automation of
class correcting.

For the first study, the following Use Case was
described in Photo_studio system.

Title: “Accepting orders in the photo studio”.

Level: UC of the user's goal level.

Main actor: order taker (T).

Interested party: customer (C).

Software product: photo studio automation system
(S).

Table 1 shows the main successful UC
scenario, as well as the classes and methods that
were created for each item in the scenario.

Table 1. UC scenario, classes and methods for implementing scenario items

Use Case Classes used Methods used
Item No. Item content

1 Casks T fqr the provision of the service. T creates a SOrder create()
new order in S. (Create)

5 C informs about the type of service. T enters data in | SOrder, ServList.isService(ser),

S. S confirms it. (Enter the data) ServList SOrder.setServ(ser)

3 C informs about format. T enters data in S. S SOrder, ServList.isFormat(form),
confirms it. (Enter the data) ServList SOrder.setFormat(form)

4 C informs about the number of copies. T enters data | SOrder, ServList.isCopies(n),
in S. S confirms it. (Enter the data) ServList SOrder.setCopies(n)

_ _ _ SOrder ServList.getDeadline(ser,

5 C informs about the desired lead time. T enters data ServLis:t Form,n),

in S. S confirms it. (Enter the data) . OrderList.getDeadline(),SOrder.s
OrderList .
etDeadline(dl)
6 T asks S for the cost of the work. S reports it. C SOrder, Tariff.getCost(ser,form,n),
agrees. (Request a value) Tariff SOrder.setCost(cost)
C contributes a certain amount of money. T enters SOrder.getChange
7 data in S. S counts the back-giving change. (Enter SOrder '
(amount)
the data)
C informs about the full name and contacts. P SOrder SOrder.setName(sname,

8 captures the received data in S. S passes the entry Or derL’ist Phon),OrderList.addOrder(sorder)
transaction in the Journal and the order in the list of Register ’ , Register.addOrder(sorder),
orders, generates a receipt. (Data Registration) SOrder.printReceipt()

400 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

Table 2 shows the changes in the requirements

(replacement, correcting, adding new items to the
scenario). The analysis of changes in items of the

scenario of four types is presented. The intermediate
state of the class structure (deleting an item in the
old edition) and the final state were recorded.

Table 2. Assessment of the correctness of changes in the structure of classes as a result of changes in
requirements

No | Scenario item new edition | Item Class Structure Changes Consistency
type After scenario item For the new edition of item | with expected
deleting results

1 C asks T for the provision | Create | SOrder class is deleted The prototype SOrder is Yes

of the service. T creates (item 1). SOrder switched into class status.

in S a new order with the prototype is created (item | The create(fio) method has

full name of C 2). All references are been added. All references

switched to the prototype | switched to the class

2 Instead of item 2. Output | The ServList class is The ServList.getList() Yes

2. T asks S for a list of the list | deleted. method is added in class

services. C outputs the ServList.isService(ser) prototype ServList

data. and SOrder.setServ(ser)

3. C chooses a service. T | Enter methods are deleted. The | The SOrder.setServ(ser)

captures the service data | the data | ServList prototype is method is added

in S. created in item 3
3 C informs about full Data SOrder.setName SOrder.setName Yes

name and contacts. T logging | (sname,Phon), (sname, Phon),

captures the received data OrderList.addOrder OrderList.addOrder

in S. S passes the entry (sorder), (sorder),

transaction in the Journal Register.addOrder Register.addOrder

and the order in the list of (sorder), (sorder),

orders, indicating the full SOrder.printReceipt() SOrder.printReceipt ()

name and contacts of C, methods are deleted methods are restored.

generates a receipt (The full name of C

entered as an attribute in
item 1 of the scenario)

Similar experiments have been performed with
items of scenarios of other types. In all cases, the
results obtained were in line with the expected ones.

For the second study, a group of students of 10
people was involved. In the Photo_studio system, 6
UCs were sequentially described for one project.
Then changes have been made to the items in the
scenario. The time was determined during which
each student in the traditional way (manually) will

Correction
Time (miny
120
100
BO
S
£]

20

.
5

10

correct the class system independently for one, two...
six precedents. The complexity of the class structure
was determined by the number of classes included in
it. The obtained dependence is presented in Fig. 3. It
is obvious that with an increase in the number of
classes, the time for their correcting significantly
increases; whilst the execution of this procedure in
an automated mode does not exceed fractions of a
second.

1 1
15

Number of Classes

Fig. 3. The dependence of the classes structure correcting time vs the number of classes

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

401

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

Conclusions. The article discusses the problem
of automating the description of Use Case at the
stages of formation and clarification of functional
requirements for the designed software product.
When requirements are changed at the first stages of
software product design, it becomes necessary to
display the changes made to the UC description, and
in parallel to the design model. Correcting scenario
items in the traditional way usually requires more
time.

To solve such problems, an algorithm has been
developed for the automated correcting of the
conceptual class model in connection with the
removal of existing items of the UC scenario of
various types. A method for tracing each item in a
UC scenario to conceptual classes, their methods
and data, as well as a method for tracing any
function or this class to the corresponding items in
UC scenarios is also proposed.

During the experiments, it was shown that
changing items of the scenario of various types lead
to adequate changes in the structure of classes
(models of conceptual classes). And also the
experiments showed the effectiveness of the
proposed methods from the point of view of a
significant reduction in time for adjusting classes in
an automated mode compared to the traditional
manual mode.

The proposed method can be used in various
technologies of object-oriented design based on the
use of UC, at the stage of constructing models of
conceptual classes and specifications of program
classes.

References
1. Kobern, Alister. (2002). “Sovremennye
metody opisaniya funkcional'nyh trebovanij k

sistemam”. [Modern methods for describing
functional requirements for systems]. Moscow,
Russian Federation, Publ. Lori, 266 p. (in Russian).

2. Frank, Armour & Miller, Granville.
(2000). “Advanced Use Case Modeling: Software
Systems”, Publ. Addison-Wesley, 425 p.

3. Leffingwell, Dean & Widrig, Don. (Dec 7.
2012). “Managing Software Requirements: A Use
Case Approach, Addison-Wesley Professional™.

4. Alexander, lan & Maiden, Neil. (2004).
“Scenarios, Stories, Use Cases”, Pybl. Wiley.

5. Wazlawick, Raul S.(2014). “Object-
Oriented Analysis and Design for Information
Systems: Modeling with UML, OCL, and IFML”.
Morgan Kaufmann, 376 p.

6. Bittner, Kurt & Spence, lan. (Aug.
20.2002). “Use Case Modeling”. Addison-Wesley
Professional, 368 p.

7. Dobing, B. & Parsons, J. (2000).
“Understanding the Role of Use Cases in UML: A
Review and Research Agenda”. Journal of Database
Management, Vol. 11, No. 4, pp. 28-36. Doi:
10.4018/978-1-931777-12-4.ch008.

8. Vigers, Karl & Bitti, Dzhoj (2014).
“Razrabotka trebovanij k programmnomu
obespecheniyu”. [Software requirements develop-
ment], Publ. BHV, 736 p. (in Russian).

9. Davis, Alan Mark. (2005). “Just Enough
Requirements Management: Where Software
Development Meets Marketing”. Dorset House,
240 p.

10. Irwin, G. & Turk, D. (2005). “An
Ontological Analysis of Use Case Modeling
Grammar”. Journal of the Association for In
Formation Systems, Vol. 6, No. 1, pp. 1-37.
DOI: 10.17705/1jais.00063.

11. Matsuura, S. Ogataand. (2013). “A review
method for UML Requirements analysis model
employing system-side prototyping™. Springerplus,
Vol. 2, No. 1, 134 p. Doi: 10.1186/2193-1801-2-
134

12. Leffinguell, D. Uidrig. (2002). “Principy
raboty s trebovaniyami. Unificirovannyj podhod”.
[Principles of working with requirements. Unified
approach]. Moscow, Russian Federation, Publ.
Izdatel'skij dom “Vil'yams”, 450 p. (in Russian).

13. Kohn, Mike. (2019). “Pol'zovatel'skie
istorii: gibkaya razrabotka programmnogo
obespecheniya”. [User stories: agile software

development] (Signature Series), Publ. Dialektika-
Vil'yams, 256 p. (in Russian).

14. Kungurtsev, A. B., Potochnyak, I. V. &
Siliaev, D. A. (2015). “Metod avtomatizirovannogo
postroeniya tolkovogo slovarya predmetnoj oblasti”
[Method for automated construction of a subject
dictionary]. Tekhnologicheskij audit i rezervy
proizvodstva, No. 2/2(22), pp. 58-63 (in Russian).

15. Kungurtsev, O., Zinovatnaya, S.,
Potochniak, la. & Kutasevych, M. (2018).
“Development of information technology of term
extraction from documents in natural language”.
Eastern-European Journal of Enterprise
Technologies, Vol 6, No. 2 (96), pp. 44-51. DOI:
https://doi.org/10.15587/1729-4061.2018.147978.

402

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.17705%2F1jais.00063

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Models and Methods of Information Technology

16. Vozovikov, Yu. N., Kungurtsev, A. B. &
Novikova, N. A. (2017). “Informacionnaya
tekhnologiya avtomatizirovannogo sostavleniya
variantov ispol'zovaniya”. [Information technology
for automated use cases]. Naukovi praci Donec'kogo
nacional'nogo tekhnichnogo universitetu. Pokrovs'k,
Ukraine, No. 1(30), pp. 46-59 (in Russian).

17. Kungurtsev, 0., Novikova, N.,
Reshetnyak, M., Cherepinina, Ya., Gromaszek, K.
& Jarykbassov, D. (6 November 2019). “Method for
defining conceptual classes in the description of use
cases”. Proc. SPIE 11176, Photonics Applications in

Methods]. [Electronic resource]. — Access mode:
URL https://refdb.ru/look/2575304-p10.html. —
Active link — 02.12.2007 (in Russian).

21. “Indeksy. Teoreticheskie osnovy”
[Indices.Theoretical basis]. [Electronic resource]. —
Access mode: URL
http://www.sql.ru/articles/mssql/03013101indexes.s
html — Active link — 05.10.2003 (in Russian).

22. Ratcliffe, Martyn & Budgen, David. (2005).
“The application of use cases in systems analysis
and design specification”. Information and Software
Technology, Volume 47, Issue 9 pp. 623-641. DOI:

Astronomy, Communications, Industry and High-
Energy Physics Experiments, 1117624. DOI:
10.1117/12.2537070.

18. Gottesdiener, Ellen. (2005). “The Software
Requirements Memory Jogger: A Desktop Guide to
Help Business and Technical Teams Develop and

10.1016/j.infsof.2004.11.00.

Manage Requirements”. Addison-Wesley, 360 p. Received 30.01.2020
19. Hall, E.; Jackson, K. & Dik, D. (2005). Received after revision 15.02.2020
“Razrabotka i upravlenie trebovaniyami”. Accepted 18.02.2020

[Development and requirements
Telelogic, 226 p. (in Russian).

20. “Informacionnye tekhnologii upravleniya.
Metody poiska tekstovoj informacii”. [Information
Technology Management. Text Information Search

management].

YK 004.912

"Hogikosa, Hataumis OuekciiBHa, cT. Bukiagay kad. «TexHiuna kibepueTnka Ta indopmarriitai Texuomorii
im. ipo¢. P.B. Mepkra», E-mail: nataliya.novikova.31@gmail.com,

ORCID: http:// orcid.org/0000 — 0002 — 6257 — 9703

! Ontechkuit HaIliOHATBHIIT MOPCHKHH YHIBEpCHTET, B/, Meunnkosa, 34, M. Ozeca, Yipaina, 65029

3MIHA I TPACYBAHHSA BUMOT J1IO ITPOTPAMHOTI'O ITPOAYKTY
HA PIBHI KOHIEIITYAJIbBHUX KJIACIB

Anomauia. Y cmammi docniodcyemvbcss npobirema agmomamuzayii onucy apiaHmis GUKOPUCMANHS HA emani QopmyeanHs
BUMO2 NPU NPOEKMYBAHHI NPOSPAMHUX NPOOYKMIE. 3anponoHO8aHO Memoou KOPU2y8ants Mooei KOHYenmyaibHux Kiacie y 36'a3Ky
31 3MIHAMU 8 YOPMYNIOBAHHT PI3HUX NYHKMIE cyenapiie eapianmie suxopucmanna abo Use Case i mpacy8amHa KOMCHO2O0 NYHKMY
cyenapito Use Case 6 KOHyenmyanvHi Kiacu, 8 ix mMemoou i ampubymu. 3MiHa eumMoz HA PIGHI ONUCY npeyeoeHmié 03Hauac
BUOAIEHHA paHiue CKIA0eHUX nyHkmie cyenapito i / abo dooasanusa Hosux. Buoarenna Use Case posensioaemucs K NOCHiO08He
BUOANIEHHA 6CIX 11020 NYHKIMIB, A PeOazy8anHs NYHKMY CYEHApiio - AK 6UOANEHHA 3 NOOANbWUM CKIAOAHHAM Y HOSI pedakyii.
Posensiymo cnocobu euoanenns 6cix munig¢ NyHKmMié CYeHapilo 3anponoHO8anol KAacu@ikayii 6 pisHUX MOJNCAUBUX CUMYAYIAX:
cmeopeHull paniuie Kiac He GUKOPUCHOGYBABCS 8 IHUUX NYHKMAX 0ano2o, abo iHWUX npeyeoeHmis, CmeopeHull paHiue Kiac He
BUKOPUCTOBYBABCSL @ THIUUX NYHKMAX 0aH020, Ab0 iHWUX npeyedenmis, aie GYHKYis, ujo MICMUmsCcsi 8 Kidci, Mac nOCUNAHHSL HA iHWL
@ynryii; cmeopenutl pauiwie KIac GUKOPUCIOBYBABCS 8 IHULUX NYHKMAX 0AHO020, a60 THWUX npeyeoenmis i hyHKyis, wo MiCmumscs
6 KIACI, He MA€ NOCUNAHHA HA THWI DYHKYIL; cCmeopeHutl paniuie Kiac 8UKOPUCMOBYBABCSA 6 THUWUX NYHKMAX 0aH020, abo THUUX
npeyedenmis i YHKYisA, Wo MiCMUmscs 8 Kiaci, Mac nocunanusa na iwi @yuxyii. Po3pobneno memoou susnauenns 3g'askie Use
Case i tio2o nynkmy 3 Knacamu, ix memooamu i ampubymamu, sKi peanizyloms yeil nyHkm (npame mpacy8ants) i 6U3Ha4eHHs 36'a3Ky
6y0b-s1K020 O0anozo abo memody knacy 3 pisnumu Use Case i ix nynkmamu (360pomne mpacysamnts). 3anponoHo8anuil memoo
KOpU2YBAHHS KOHYENMYANbHUX KIACI@ 00360NAE 6 ABMOMAMU306AHOMY PedCUMi UOANAMU DI3HI NYHKMU cyeHapiis, 36epieaiodu
KOpexkmue YA6NeHHs KoHyenmyanvhux kracie. Ilokazano, wo cnocmepicacmscs icmomHue CKOPO4eH s 4acy Ha KOPU2yeanHs Kidacie 6
A6MOMAMUZ0BAHOMY PENHCUMI NOPIGHAHO 3 MPAOUYITHUM DYUHUM percumom. Memoo mpacyeanns maxkosic icmomHo cKopouye dac
na nowyk 36'a3xie miowc Use Case.

Knirouogi cnosa: sapianmu suxopucmanus;, cyenapii; Mooeni; KOHYenmyauibhi Kiacu, mpacysanHs

ISSN 2617-4316 (Print) 403

ISSN 2663-7723 (Online)

https://www.spiedigitallibrary.org/profile/notfound?author=Oleksii_Kungurtsev
https://www.spiedigitallibrary.org/profile/notfound?author=Nataliia_Novikova
https://www.spiedigitallibrary.org/profile/notfound?author=Maria_Reshetnyak
https://www.spiedigitallibrary.org/profile/notfound?author=Maria_Reshetnyak
https://www.spiedigitallibrary.org/profile/notfound?author=Yana_Cherepinina
https://www.spiedigitallibrary.org/profile/Konrad.Gromaszek-6449
https://www.spiedigitallibrary.org/profile/Daniyar%20.Jarykbassov-4146738
mailto:nataliya.novikova.31@gmail.com

Applied Aspects of Information Technology 2020; Vol. 3 No.1: 393-404
Models and Methods of Information Technology

V]IK 004.912

"HoeukoBa, Hatains AnexceeBHa, crapinii mpenonasarens kadeapsl «TeXHHUeCKast KHOSPHETHKA H
uH(pOPMaIIHOHHEIE TexHoIornK uM. Ipod. P. B. Mepkrax», E-mail: nataliya.novikova.31@gm;il.com,
ORCID: 0000 — 0002 — 6257 — 9703

! Opeccknit HaLHOHABHBII MOPCKO# yHHBEpCHTET Vi1 Meunukosa, 34. r. Onecca, Yipanua, 65029

U3MEHEHUE U TPACCUPOBAHUE TPEBOBAHUI K TIPOTPAMMHOMY
HNPOAYKTY HA YPOBHE KOHIEINITYAJIBHBIX KJIACCOB

Annomayun. B cmamve uccredyemca npobrema asmomamuzayuu ONUCAHUS 6APUAHINOE UCHONb308AHUA HA dmane
Gopmuposanusi mpebosanuil npu NPOEKMUPOSAHUU NPOSPAMMHBIX NPOOYKmMos. IIpednodicenvl mMemoovl KOPPeKmuposKu Mooenu
KOHYENMYanibHbIX KIACCO8 CEAA3U C USMEHEHUAMU 8 POPMYIUPOBKE PA3TULHBIX NYHKIMOG CYEHApUes 8apuannos UCHOIb308AHUSL UTU
Use Case u mpaccuposku xadxcoozo nywkma cyenapusi Use Case 6 kouyenmyanbHble KIACCbl, 8 UX Memoovl U ampuoOymul.
Hsmenenue mpeboganutl Ha YyposHe ONUCAHUSL NPEYeOeHMO8 O3Haudem YOaleHue panee COCMAGIEHHbIX NYHKMOG CYeHapus u/uiu
0obasnenus Hoswix. Yoanenue Use Case paccmampusaemcst Kak nociedosamenbHoe YOdieHue 6cex e20 NyHKMOo8, d peoakmuposanue
NYHKMA CYeHapusi — KaK YOaleHue ¢ nociedyiomum cOCmagienuem 8 Hogoll pedaxyuu. Paccmompensl cnocobul yoanenus cex munog
NYHKMO8 CYEeHapusi NPeONiONCeHHOU KIACCUDUKAYUL 6 PA3IUYHBIX BO3MOJICHBIX CUMYAYUSIX: CO30AHHbLIL paHee KIACC He
UCNONB306ANCS 8 OPY2UX NYHKMAX OAHHO2O, TUDO UHBIX NPEYeOeHnos, CO30aHHbII panee KIACc He UCRONb308AICs 8 OPY2UX NYHKMAX
0aHH020, TUOO UHBIX NPeyedeHmos, HO (YHKYUS, COOePIHCAWARACS 6 KIACCe, UMeem CCbUIKU HA opyeue (YYHKYuu, cO30anHblll paHee
KAACC UCRONB308AICS 8 OPY2UX NYHKMAX OAHHOZ20, TUOO UHBIX NPEYeOeHMOs8 U (PYHKYUSL, COOEPAUCAWAACI 8 KAAcce, He umeent CCbLIKU
Ha Opyeue yHKYuU, CO30AHHBLL PaHee KIACC UCHONb308ANC 6 OpyeuX NYHKMAX OaHHO20, IUOO UHBIX NpeyeoeHmos u (YHKYyus.,
cooepacauasics 8 Kiacce, umeem cculiku Ha opyeue (ynkyuu. Paspabomanvr memoowt onpedenenus cesseti Use Case u e2o nynkma
C KIaccamu, ux Memooamu u ampuOymamu, peaiu3yiowumu Smom nyHKm (npsmas mpaccuposeKa) u onpeoeieHus césizu 1iobo2o
dannozo unu memooda kiacca ¢ paziuunbimu Use Case u ux nynkmamu (obpammuas mpaccuposka). Ilpeonoscennviti memoo
KOPPEKmMupogKl KOHYenmyaibHulX KIACCo8 NO360ISem 8 AGMOMAMU3UPOBAHHOM PeACUMe YOIsinb PA3IuyHble NYHKMbL CUeHAPUEs,
COXpamsis KOppekmHoe npeocmasienue KOHYenmyanvHvlx kaaccog. Iloxazano, umo Habriodaemcs cyujecmsenHoe COKpaujeHue
6peMeHU HA KOPPEeKMUPOBKY KIACCO8 8 ABMOMAMUSUPOBAHHOM DedNCUMe CPABHUMENbHO ¢ MPAOUYUOHHBIM DYUHBIM DENCUMOM.
Memoo mpaccuposku makaice cyuecmeeHHo cokpaujaem epems Ha nouck cesazei mexcoy Use Case.

Knrouesvie cnosa: eapuanmol ucnonb306anusl; CyeHapuu; MoOenu; KOHYenmyaubHble KIaccol, mpaccuposKa

Nataliia O. Novikova, Senior teacher
Research field: Automation of Information Systems Design

404 ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

