УДК 62-83

Е. В. Найденко, канд. техн. наук

ДВУХМАССОВАЯ ЭЛЕКТРОМЕХАНИЧЕСКАЯ СИСТЕМА С ЛЮФТОМ В ПЕРЕДАЧЕ В РЕЖИМЕ ПУСКА

Аннотация. Рассмотрены возможные динамические нагрузки в элементах двухмассовой электромеханической системы с учетом зазора в механической передаче при различных законах управления пуском двигателя. Представлены результаты моделирования.

Ключевые слова: двухмассовая электромеханическая система, кинематическая передача, динамические нагрузки, момент инерции, упругая связь

Е.В.Найденко, канд. техн. наук

ДВОМАСОВА ЕЛЕКТРОМЕХАНІЧНА СИСТЕМА З ЛЮФТОМ У ПЕРЕДАЧІ В РЕЖИМІ ПУСКУ

Анотація. Розглянуто можливі динамічні навантаження в елементах двухмассовой електромеханічної системи з урахуванням зазору в механічній передачі при різних законах управління пуском двигуна. Представлені результати моделювання.

Ключові слова: двомасова електромеханічна система, кінематична передача, динамічні навантаження, момент інерції, пружний зв'язок

E. Naydenko, PhD.

START A TWO-MASS ELECTROMECHANICAL SYSTEM WITH BACKLASH

Abstract. The possible dynamic loads in elements of a two–mass electromechanical system based on the gap in the mechanical transmission in various start–up the engine control laws. The simulation results.

Keywords: two–mass electromechanical system, kinematic transmission, dynamic loads, moment of inertia, elastic connection, elastic tie.

Введение. Динамические нагрузки и время переходного процесса для механизмов горизонтального перемещения играют превалирующую роль, так как значительную долю цикла они работают в переходных режимах. Характер изменения управляющего воздействия существенно влияет на показатели качества системы.

Рассмотрим пуск реального механизма горизонтального перемещения (например, поворотной платформы крана или экскаватора), когда двигатель мгновенно развивает момент M_m (характеристика 1 на рис.1).

Рис. 1. Диаграмма момента M(t) при разгоне

Для учёта влияния скачкообразного закона изменения усилия на нагрузки в звеньях кинематической передачи целесообразно рассматривать двухмассовую электромеханическую систему (ДЭМС), в которой упругая (податливая) связь между двигателем и поворотной платформой обладает конечным значением жёсткости C_y . Расчётная схема такой ДЭМС после приведения всех элементов к валу двигателя приведена на рис. 2.

Рис.2. Расчетная схема ДЭМС

Здесь ротор двигателя с моментом инерции J_{∂} , механизм поворота с моментом инерции J_1 , M – момент (усилие) двигателя, ω_{∂} и ω_1 – угловые скорости вращения двига-

36

теля и рабочего органа соответственно, $M_y = C_y(\varphi_{\partial} - \varphi_1)$ — момент упругой деформации между двигателем и механизмом; именно этот момент нагружает кинематическую передачу механизма; δ — эквивалентный зазор в передаче.

В публикациях последних лет представлены материалы, свидетельствующие о повышенном интересе к исследованиям многомассовых ЭМС. Так, в работах [3,4] рассмотрены динамические нагрузки в ДЭМС в режиме торможения, в [5] предложено управление асинхронным электроприводом механизмов поворота, обеспечивающее снижение динамических нагрузок. В работе [6] рассмотрена возможность реализации программы управления двухмассовой электромеханической системой на базе промышленного контроллера, в работе [7] приведены соотношения, учитывающие потери на диссипацию, а в [8] показана возможность реализации плавных переходных процессов крановых механизмов.

Целью работы является определение быстродействия ЭМС и возможной динамической нагрузки в ее элементах с учетом зазора при различных законах управления пуском двигателя.

Материалы исследования. Наличие зазора в механической части может приводить к повышенным динамическим нагрузкам при его выборе.

Для режима разгона, когда двигатель развивает пусковой момент, мгновенно достигающий значения М_m, получено дифференциальное уравнение для двухмассовой ЭМС после выбора зазора δ без учёта потерь на диссипацию [2]:

$$T^{2} \frac{d^{2} M_{y}}{dt^{2}} + M_{y} = M_{y cp}, \qquad (1)$$

Решением этого уравнения с учетом начальных условий к моменту окончания выбора зазора

$$M_{y} = 0, \quad \frac{dM_{y}}{dt} = C_{y} \sqrt{\frac{2M_{m}\delta}{J_{\delta}}}, \qquad (2)$$

будет выражение

$$M_{y} = M_{y cp} (1 - \cos \Omega t) + \sqrt{\frac{2C_{y} M_{m} J_{1} \delta}{J}} \sin \Omega t, \quad (3)$$

На рис. З изображена зависимость момента упругой связи от времени при пуске ДЭМС, где t_z – время выбора зазора. Времена достижения упругим моментом экстремальных значений

$$t_{max} = \frac{1}{\Omega} \left[\pi - \operatorname{arctg} \frac{C_y}{M_{ycp}\Omega} \sqrt{\frac{2\delta M_m}{J_o}} \right]_{W}$$
(4)

$$t_{\min} = \frac{1}{\Omega} \left[2\pi - \operatorname{arctg} \frac{C_y}{M_{ycp}\Omega} \sqrt{\frac{2\delta M_m}{J_{\delta}}} \right].$$
(5)

а также максимальное и минимальное значение упругого момента

$$M_{\text{max}} = M_{y \text{ cp}} + \sqrt{M_{y \text{ cp}}^2 + \frac{C_y^2}{\Omega^2} \frac{2M_m \delta}{J_o}}$$
(6)

$$M_{\rm min} = M_{y\,\rm cp} - \sqrt{M_{y\,\rm cp}^2 + \frac{C_y}{\Omega^2} \frac{2M_m \delta}{J_{\delta}}}, \qquad (7)$$

определяются при решении уравнения, получаемого из выражения (3) при

Рис.3. Зависимость момента упругой связи от времени при пуске

Во время пуска при разомкнутом зазоре механическая связь между инерционными массами J_{∂} и J_1 отсутствует, и под действием момента M_m ротор двигателя вращается равноускоренно со скоростью

$$\omega_{\partial} = \frac{M_m - M_c}{J_{\partial}} t = \varepsilon_z t, \tag{8}$$

где ε_z — ускорение при выборе зазора. За время выбора зазора двигатель успевает разогнаться до некоторой начальной скорости $\omega_{\partial \text{ нач}}$ и запасти кинетическую энергию

$$J_{\partial} \frac{\omega_{\partial \, \text{\tiny Hay}}^2}{2} = \left(M_m - M_c\right) \frac{\delta}{2},\tag{9}$$

откуда

$$\omega_{\partial \text{ Hay}} = \sqrt{\varepsilon_z \delta}$$
.

Тогда время выбора зазора

$$t_z = \frac{\omega_{\partial \text{ Hay}}}{\mathcal{E}_z}.$$
 (10)

Чтобы избежать больших нагрузок в передаточных кинематических звеньях при выборе зазоров в зубчатых передачах, на время выбора зазора используют управление, при котором двигатель развивает небольшой момент М₁, достаточный лишь для разгона самого двигателя, а затем скачком изменяется до максимального M_m (характеристика 2 на рис.1) [2],

$$M_{1} = \frac{K_{\partial m}(K_{\partial m} - 2)}{2\delta C_{12}} M_{m}^{2}, \qquad (11)$$

где К_{дт} – допустимый коэффициент динамичности, задавая который можно определить М₁.

Изменение управляющего воздействия в два этапа (характеристика 3 на рис.1), где времена переключения определяются из условия равенства нулю скорости двигателя к моменту выбора зазора

$$t_1 = t_2 = \sqrt{\frac{\delta J_o}{2M}} \quad , \tag{12}$$

что необходимо для снижения динамических нагрузок и обеспечения минимального времени пуска.

Известно [2], что коэффициент динамичности K_{∂} можно снизить при пуске, если осуществить не мгновенное, а монотонное нарастание момента. Так, если момент двигателя нарастает по экспоненте (характеристика 4 на рис. 1)

$$M = M_m \left(1 - e^{1/T_m} \right), \tag{12}$$

то коэффициент динамичности зависит от темпа изменения момента, т.е. от постоянной времени T_m , и частоты собственных колебаний Ω

$$K_{o} = 1 + \frac{1}{\sqrt{1 + T_{m}^{2}\Omega^{2}}},$$
 (13)

Для подтверждения результатов расчёта по приведенным формулам проведено моделирование известным методом [2] по структурной схеме ДЭМС. При моделировании использовались данные реального портального крана, у которого $C_v = 3,6 \ \kappa H \cdot M$. Поворотная платформа приводится в движение двумя асинхронными двигателями с короткозамкнутым ротором серии МТКГ 411-6, номинальная мощность каждого из них $P_{H} = 30 \text{ kBr}$, номинальная скорость $\omega_{\mu} = 101,53 \text{ c}^{-1}$. Принят максимальный пусковой (тормозной) момент $M_m = 2,5 M H = 367,68$ Нм, момент инерции двух двигателей $J_{a} = 1,15 \text{ кгм}^{2}$. Момент инерции поворотной платформы составляет $13 J_{a} = 14,92 \text{ KGM}^{2}$.

Детальное моделирование пуска ДЭМС с $J_1/J_{\partial} = 13$ и $M_c = 0$ проводилось при различных начальных условиях. Полученные в результате значения максимального момента упругости и коэффициента динамичности при $\delta = 0,5$ рад, 7 рад и мгновенном изменении задающего воздействия (характеристика 1 на рис. 1), приведены соответственно в табл.1 и 2. Таблица 1

δ = 0,5 рад

Момент переключе- ния	М _{у max} , Н∙м	K_{∂}
$\Omega t = \Omega t_z$	0	0
$\Omega t = \Omega t_z + \pi / 4$	652	1,9
$\Omega t = \Omega t_z + \pi / 2$	1170	3,4
$\Omega t = \Omega t_z + 3\pi/4$	1170	3,4
$\Omega t = \Omega t_z + \pi$	700	2,1
$\Omega t = \Omega t_z + 5\pi/4$	20	0,1
$\Omega t = \Omega t_z + 3\pi/2$	-490	1,4
$\Omega t = \Omega t_z + 7\pi/4$	-490	1,4
$\Omega t = \Omega t_z + 2\pi$	0	0

График зависимости коэффициента динамичности от начальных условий при пуске для $J_1 / J_{\partial} = 13$ и $\delta = 0,5$ рад и 7 рад представлен на рис.4.

Таблица 2

 $\delta = 7$ рад

Момент переключе- ния	M _{y max} , H∙м	K_{∂}
$\Omega t = \Omega t_z$	0	0
$\Omega t = \Omega t_z + \pi / 4$	2150	6,3
$\Omega t = \Omega t_z + \pi/2$	3185	9,3
$\Omega t = \Omega t_z + 3\pi/4$	2550	7,5
$\Omega t = \Omega t_z + \pi$	700	2,1
$\Omega t = \Omega t_z + 5\pi/4$	-1705	5,0
$\Omega t = \Omega t_z + 3\pi/2$	-2600	7,6
$\Omega t = \Omega t_z + 7\pi/4$	-1770	5,2
$\Omega t = \Omega t_z + 2\pi$	0	0

Рис.4. Зависимость коэффициента динамичности от начальных условий при пуске для δ = 0,5 рад и δ = 7 рад

Полученные по расчетным формулам и моделированием минимальное и максимальное значения коэффициента динамичности в режиме пуска ДЭМС и мгновенном изменении задающего воздействия (характеристика 1 на рис. 1) при отсутствии статического момента и реальном значении статической нагрузки механизма поворота (M_c=0,15 M_m) при различных значениях зазора δ приведены в табл. 3 и 4.

Таблица 3

$$M_c = 0, J_1/J_0 = 13, M_{y cp} = 341,42 \text{ H} \cdot \text{M}$$

δрал		$\Omega t =$	$\Omega t_{\rm max}$	$\Omega t = \Omega t_{\min}$		
		Моде-	Фор-	Моде-	Фор-	
- ;	I	лиро-	мула	лиро-	мула	
		вание		вание		
0	М _у ,Н·м	682	682,8	0,00	0,00	
0	K_{∂}	2,00	2,00	0,00	0,00	
0,5	Му,Н∙м	1200	1198	-515	-515	
	K_{∂}	3,51	3,51	1,51	1,51	
1,0	Му,Н∙м	1505	1504	-780	-821	
	K_{∂}	4,41	4,41	2,28	2,41	
3,0	М _у ,Н∙м	2297	2297	-1615	-1614	
	K_{∂}	6,73	6,73	4,73	4,73	
7,0	Му,Н•м	3303	3303	-2620	-2620	
	$\overline{K_{\partial}}$	9,67	9,68	7,67	7,68	

Таблица 4 $M_c = 0,15 M_m, J_1/J_\partial = 13, M_{y cp} = 345,31 \text{ H}\cdot\text{M}$

δрад		$\Omega t =$	$\Omega t_{\rm max}$	$\Omega t = \Omega t_{\min}$		
		Моде-	Фор-	Моде-	Фор-	
	, r	лиро-	мула	лиро-	мула	
		вание		вание		
0	М _у ,Н∙м	686	686,7	-4,00	-3,94	
0	K_{∂}	1,99	1,99	0,01	0,01	
0,5	М _у ,Н·м	1200	1200	_	_	
				517,0	517,4	
	K_{∂}	3,47	3,48	1,50	1,50	
1,0	Му,Н•м	1505	1505		_ 822,9	
	K _d	4,36	4,36	2,38	2,38	
3,0	М _у ,Н∙м	2297	2298	-1615	-1615	
	\overline{K}_{∂}	6,65	6,65	4,68	4,68	
7,0	М _у ,Н∙м	3303	3303	-2620	-2620	
	\overline{K}_{∂}	9,56	9,57	7,59	7,59	

Полученные моделированием значения максимального коэффициента динамичности в режиме пуска ДЭМС с различным соотношением моментов инерции J_1/J_0 и отсутствии статического момента при изменении задающего воздействия по экспоненте (характеристика 2 на рис. 1) и различных значениях зазора δ приведены в таблице 5.

В табл.6 приведены динамичекие нагрузки, а также время переходного процесса при различных задающих воздействиях во время пуска.

Таблица 5
Максимальный коэффициент динамичности

$\frac{J_1}{J_1}$	δ, рал	$\frac{T_m}{2\pi/\Omega}$					
0	рид	0	0,2	0,4	0,6	0,8	1
	0,5	5,0	4,8	4,4	4,1	3,9	3,7
1,5	3	10,5	10,4	10,1	9,8	9,5	9,2
	7	15,4	15,4	15,2	14,9	14,6	14,4
	0,5	3,5	3,3	2,9	2,6	2,4	2,2
13	3	6,7	6,6	6,3	6,0	5,7	5,4
	7	9,7	9,6	9,3	9,0	8,7	8,5
100	0,5	3,4	3,2	2,8	2,5	2,3	2,2
	3	6,6	6,4	6,1	5,8	5,5	5,2
	7	9,4	9,3	9,1	8,7	8,4	8,1

		Разгон на		Обеспече-		Изменение		
		понижен-		ние нуле-		момента по		
		ной ско-		вой скоро-		экспоненте		
J_1	δ.	рости,		сти двига-		T		
$\frac{1}{I}$	с, рад	K _{dm}	$K_{\partial m}=2.5$		теля в мо-		$\frac{m}{2\pi/\Omega} = 1$	
J	рад	0 ,		ра зазора.		$2\pi/32$		
			t _{ππ} ,		t _{nn} ,			
		K_{∂}	c	K_{∂}	c	K_{∂}	t_{nn}, c	
1,5	0,5	3,14	0,55	2,00	0,53	3,66	0,55	
	3	3,13	1	2,00	0,62	9,24	0,65	
	7	3,13	1,55	2,00	0,7	14,4	0,7	
13	0,5	2,51	4,5	2,00	4,48	2,23	4,48	
	3	2,50	5,3	2,00	4,60	5,42	4,65	
	7	2,51	5,5	2,00	4,62	8,42	4,66	
100	0,5	2,49	31,6	2,00	31,6	2,16	31,7	
	3	2,48	32	2,00	31,7	5,25	31,8	
	7	2,48	32,5	2,00	31,8	9,89	31,9	

Изменение динамических нагрузок в зависимости от постоянной времени T_m при изменении задающего воздействия по экспоненте в ДЭМС с соотношением моментов инерции $J_1/J_0 = 13$ и $\delta = 0,5$; 3 и 7 рад при отсутствии статического момента представлено на рис.5.

Рис.5. Зависимость коэффициента динамичности от постоянной времени T_m в ДЭМС с $J_1/J_0 = 13$

Процессы пуска в ДЭМС при соотношении моментов инерции $J_1/J_0 = 13$ и значении зазора $\delta = 3$ рад в передачах при различном управлении, полученные при моделировании, представлены на рис. 6 и 7.

Для управления процессом пуска на пониженной скорости (характеристика 2 на рис.1) или в два этапа с обеспечением нулевой скорости двигателя в момент выбора зазора (характеристика 3 на рис.1), необходимо достаточно точно определить величину зазора и времена переключения. На основании этих данных составляется программа работы процессора, который и будет таким образом управлять приводом.

обеспечение нулевой скорости двигателя в момент выбора зазора, (в) – изменение момента по экспоненте, $T_m / (2\pi/\Omega) = 1$

Таблина 6

Выводы. Очевидно, что с увеличением зазора возрастает также коэффициент дина-

обеспечение нулевой скорости двигателя в момент выбора зазора,, (в) – изменение момента по экспоненте, T_m /(2π/Ω) =1.

приводит к снижению динамических нагрузок, однако при величине зазора более 0,5 рад мгновенное изменение момента при пуске недопустимо. Разгон на пониженной скорости ограничивает динамические нагрузки, хотя в ДЭМС с малым значением момента инерции J₁ экспериментальные значения коэффициента динамичности превышают расчетные на 25%. При управляющем воздействии, обеспечивающем нулевую скорость двигателя на момент выбора зазора, достигается минимальное значение динамических нагрузок вне зависимости от соотношения моментов инерции и значения зазора, однако требуются данные о реальной величине зазора и возможность переключения с необходимой точностью. Изменение управляющего воздействия по экспоненте можно рекомендовать в ДЭМС с большим значением момента инерции J_1 и величине зазора до 1 рад.

Список использованной литературы

1. Ключев В. И. Электропривод и автоматизация общепромышленных механизмов [Текст] / В. И. Ключев, В. М. Терехов. – М.: Энергия: – 1980. – 360 с.

2. Герасимяк Р.П. Анализ и синтез крановых электромеханических систем [Текст] / Р.П.Герасимяк, В.А.Лещёв. – Одесса: СМИЛ: – 2008. – 192 с.

3. Герасимяк Р.П. Нагрузки в кинематических передачах двухмассовой электромеханической системы в режиме торможения [Текст] / Р. П. Герасимяк, Е. В. Найденко // Электротехнические и компьютерные системы. – Киев: – 2015. – Вып. 17(93). – С.15– 22.

4. Герасимяк Р.П. Двухмассовая электромеханическая система с люфтом в передаче в режиме торможения [Текст] / Р. П. Герасимяк, Е. В. Найденко //. Электротехнические и компьютерные системы. – Киев: – 2015. – Вып. 18(94). – С.62–68.

5. Герасимяк Р.П. Управление асинхронным электроприводом механизмов поворота, обеспечивающее снижение динамических нагрузок [Текст] / П.Герасимяк, Е.В.Найденко // Проблемы автоматизированного электропривода. Теория и практика. – Вісник НТУ «ХПІ» – Харків: – 2008. – Вып. 30.– С. 111–112.

6. Бушер В.В. Учебный програмноаппаратный макет для исследования двухмассовой электромеханической системы [Текст] / В. В. Бушер, Е. В. Найденко //. Электротехнические и компьютерные системы. – Киев: – 2015. – Вып. 20(96). – С.16–22.

7. Герасимяк Р.П. Улучшение качества переходных процессов при выборе зазора в электромеханических системах [Текст] / Р.П. Герасимяк, В.В. Субботин // Электротехнические и компьютерные системы. – Киев: – 2013.–Вып.10(86).–С.27–32.

8. Фираго Б. И. Применение устройств плавного пуска и торможения асинхронных двигателей в электроприводах крановых механизмов передвижения [Текст] / Б. И. Фираго, Д. С. Васильев // Электротехнические и компьютерные системы. – Киев: – 2011. – Вып. 4.(80). – С.30–38.

9. Smolyaninov D. Stand der Forschungen zur Pendeldampfung bei Drehkranen / Smolyaninov D., Palis F., Horn P., Grigorov O.W. – Kranfachtangung Universität Magdeburg, 2002, pp. 113 – 128.

10. Smolyaninov D. Ergebnisse der Untersuchungen zur Pendeldampfung bei Drehkranen. / Smolyaninov D., Horn P., Krause F., Palis F. – Kranfachtangung Technische Universität Dresden, 2003, pp. 107 – 116.

Получено 28.02.2016

References

1. Klyuchev V.I., and Terekhov V.M. Elektroprivod i avtomatizatsiya obshchepromyshlennykh mekhanizmov [Electric Drive and Automation of General–Purpose Machinery], (1980), Moskow, Russian Federation, *Energy*, pp. 360 (In Russian).

2. Gerasimyak R.P., and Leshchev V.A. Analiz i sintez kranovih elektromehanicheskih system [Analysis and Synthesis of Crane Electromechanical Systems], (2008), Odessa, Ukraine, *SMIL*, pp. 192 (In Russian).

3. Gerasimyak R. P., and Naydenko E. V. Nagruzki v kinematicheskih peredachah dvuhmassovoy elektromehanicheskoy sistemi v regime tormogenija [Loads in Kinematic Transfers Two-mass Electromechanical System During Braking]. (2015), *Electro-technical and computer systems*, Kiev, Ukraine, Vol. 1(93), pp. 15–22 (in Russian).

4. Gerasimyak R. P., and Naydenko E. V. Dvuhmassovaja electromehanicheskaja sistema s luftom v peredache v regime tormogenija [The kinematic transmission loads of two-mass electromechanical system with gear during braking]. (2015), *Electro-technical and computer systems*, Kiev, Ukraine, Vol.18(94), pp. 62–68 (in Russian).

5. Gerasimyak, R.P., and Naydenko, E.V Upravlenie asinhrpnnim electroprivodom me-

hanismjv povorota, obespechivayuchee snigenie dinamicheskih nagrusok [Management of asynchronous electric drive mechanisms pivot provides a reduction of dynamic loads]. (2008), *Problems of Automated Electric.* . *Theory and Practice.* – Kharkiv, Ukraine, Vol. 30, pp. 111– 112 (In Russian).

6. Busher V. V., and Naydenko E. V. Uchebniy programno–apparatniy maket dlja issledovanija dvuhmassovoy electromehanicheskoy sistemi [Educational hardware and software layout for research two–mass electromechanical system]. (2015), *Electro–technical and computer systems*, Kiev, Ukraine, Vol. 20 (96), pp.16–22 (in Russian).

7. Gerasimyak R. P., and Subbotin V. V. Uluchshenie kachestva perehodnih prozessov pri vibore zazora v elektromehanicheskih sistemah [Improving the quality of transients in the selection of the gap in electromechanical systems]. (2013), *Electro–technical and computer systems*, Kiev, Ukraine, Vol. 10 (86), pp.27–32 (in Russian).

8. Firago B. I., and Vasilyev D. S. Primenenie ustrojstv plavnogo puska i tormogenija asinhronnih dvigatelej v elektroprivodah kranovih mehanizmov peredvigenija [The use of soft starters and braking asynchronous motors in electric crane mechanisms of movement]. (2011), *Electrical and Computer Systems*, Kiev, Ukraine, Vol. 4(80), pp.30–38 (in Russian).

9. Smolyaninov D., Palis F., Horn P., and Grigorov O.W. Prior research of oscillation damping in cranes. *Kranfachtangung Universität Magdeburg*, 2002, pp. 113–128 (in Germany).

10. Smolyaninov D., Horn P., Krause F., and Palis F. Results of investigations of oscillation damping in cranes. *Crane Symposium Technical University Dresden*, 2003, pp. 107–116 (in Germany).

Найденко Елена Валерьевна, к.т.н., доц. каф. ЭСКУ Одесского национального политехнического университета. Тел. 048–705–8467. E-mail: alena2808@ukr.net