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ANALYSIS OF THE STRUCTURES OF ALGEBRAIC DYNAMICAL SYSTEMS BASED ON
A COMPUTER SOLUTION OF THE GENERALIZED ARTIN HYPOTHESIS

G. Vostrov, R. Opiata
Odessa national polytechnic university

Abstract. The article considers the generalized Artin's hypothesis. The analysis of algebraic dynamical
systems on the set of prime numbers is given. The properties of dynamic algebraic systems are studied.
Based on computer modeling, a solution of Artin’s generalized hypothesis was constructed. A classification

of prime numbers for any natural number a >1 is constructed. The properties of classes of prime numbers
are investigated. A method of structural analysis of algebraic dynamical systems with close values of
generalized Artin constants was developed. It is established that for any a >1 each class has a probability
measure, and the sum of the measures of the classes tends to unity.
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Introduction

It can be argued that for almost a hundred years
Artin’s hypothesis has been the object of research
for groups of mathematicians, research mathematical
centers, universities [1, 2, 3] as well as individual
mathematicians [4]. In recent years, fundamental
reviews of all scientific publications have appeared
to one degree or another aimed at the synthesis and
particular solution of this problem. A review article
by Moree [4] should be highlighted with a rather in-
depth analysis of various methods for solving the
Artin problem. In the review of the author for the

case a =2, it gives an estimate of A(l) =0,3739...
which is Artin’s constant C(2) ie. c(Z) = A(l). This
estimate of the Artin constant for @ =2 1is derived
from the expression:

ol

p>2 p _1)

where P is the set of all prime numbers. In Moree
work does not provide analytical proof of this
relationship.

In Carella work [5], an attempt was made to
generalize Artin's hypothesis to a set of composite
numbers that have a generalized primitive root. At
the same time, the author, along with the Euler

function go(p), uses its analogue Carmichael ﬂ,(m)

function which, according to the author’s statement,
satisfies the relation:

(p(p“) if p=3 or u=2;
Ap')=10l2") ir u=012
2“7 if  p=2 and ux=3.
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At the same time, the author stipulates that in
a few other cases other relations between functions

take place. However, in all cases ™" = l(mod n)

The generalization of Carella [5] for Artin's
hypothesis is that, in addition to the set of all primes,

the case of the set NV, is considered, which include

composite numbers for which @ =2 the primitive
root extends to composite numbers, according to the
author, has the form:

N, = {3,53%,113-519,57 3% ,29,3-11,37.45,...}

Instead of p, it was proposed to consider
P, c N, with p, C P, i.e. the set of all primes for
which @ =2 is the primitive root of the proper
subset P, of the set of all primes P . The concept of
a primitive root for compound numbers is based on
the fulfillment of the equality 24 = 1(m0d n)

Such a generalization of the concept of primitive
root to the case of compound numbers 7 can be
considered correct. On the basis of this definition,
the asymptotic formula

Nz(x):|{n£x|ordn(Z):/l(n)H at x—>00 is

introduced in the work.
In this paper, an attempt is made to prove that
the asymptotic relation holds:

Vy—va,

N,(x)= [e—+ 0(1)}%1‘[(1—#} (D

r(az) (10g x)l “ ew

where W is defined by the relation, v, is the Euler

constant calculated for the set of primes P, .

w={peP|2"" —~1=0(mod p)&2"" —1=O(mod p* )}
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The author generalizes this relation to the case of
any a > 2 fair to assume:
v, —va,

NH(X)=(%+O(1)JW.Q[1_#] (1.1)

u

where v, and ¢, are Euler and Artin constants for

a =u, respectively. It is assumed that v is Euler's
constant, and its generalization to the case of a set of
numbers consisting of such natural numbers for
which a is a generalized primitive root, i.e. there
are equality:

leln]nx+v+0( ! J; 2)
prp logx

Z l=h1]nx-0:a+va+0( ! jaa 3)
log x

m<x&neN,(x) n

where N, (x) is the set of natural numbers for which
a is a primitive root i.e. a*") = (mod 1), e, is the
constant c(a) of Artin, and v, is the Euler constant

which can be calculated asymptotically:

@—au log x u x <1000. (4)

peP,,p<1000 pP-

VvV =

u

In the following, instead of the u# symbol used
by Corell, we will denote the symbol « .

The above relations for the case of a > 2 are
not strictly proved. This is especially noticeable for

the expression v, , which includes «,, which is
unknown. Equality (2) is known as the Mertens

formula [6], the validity of relation (3) requires
rigorous proof. Therefore, relations (1.1) and (4)

must also be rigorously proved. The case of a =2
is consistent with the review by Moree [4];

moreover, such estimates of c(2) =, are given in
[5].

It should be noted that the Artin Mertens f3,
and Artin-Euler v, constants are introduced in
Carella [5], which have equivalent definitions:

1
Z ——a, log log xJ

—00
¥ P<x,peP,

pom|

1
B.=v,— ZZ@

pEeP, k=2

In order to further deepen the analytical
methods for studying the Artin hypothesis, it makes

sense to obtain approximate estimates of S, o,

v, for any values of a>1 and establish their

asymptotic properties.

The deepening of the theory of the Artin
hypothesis is possible with the consideration of
another version of the generalization of the Artin
hypothesis, one of which is given in [7]. Consider
this option from several points of view. First of all,
for any a>1 and all prime numbers pe P,

expression a' El(mod p) makes sense as an
iterative process, i.e. suggest a recursive algorithm
for calculating the minimum value of ¢>1, at
which this equality is achieved. Let x,=1,
X, =ax, (mod p). Iterations will continue until
we get:

x, =ax,_,(mod p)=1.

Such an algorithm can be used for any p e P,
and moreover for any natural number n for which
a is a primitive root in the generalized sense.

With such an approach to the set of natural
numbers N for a given a > 1, we obtain a discrete
dynamical system, which for each value of p € P
has a fixed point. We call such a discrete dynamic
system an algebraic dynamical residue system on the
base a .

Such a dynamic system for each a >1 on the
basis of Fermat's small theory divides the set of all
primes P into a set of classes

{P.(1),P,(2)...,P,(k)...}. As shown in [8], each

a a oo

class P, (k) is determined by the relation:

P(x)={p| peP&(p—1)/card,(p)=kj,
where card, (p):t is such that a' = l(mod p),

i.e. this is the length of the recursion of the
corresponding fixed point p . In the given paper it is
proved that there are infinitely many such classes. It
can be assumed that each class Pa(k) contains

infinitely many primes, and the relation:

Pa(k)|/|p|—>0 npu kK —> ©

The question of the dynamics of change in
Pa(k)| with increasing k& remains open. Obviously,

the generalization of the Artin c(a,i) constants
satisfies the condition:

gc(a,i):l.

It follows from this relation that the constants
c(a,i) for each i with a random choice of p € P
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determine the probability that a given prime number
belongs to the set Rz(z) From here we follow that
the probabilistic approach, the idea of which is
developed in the work of Kowalski [6], can be
applied to all classes of Pa(z) for any a >1. If for

any a > 1 that is a primitive root, we put i =1, then
Pa(z) is the set of all primes for which a is their

primitive root.
The analysis of classes:

{2, (1), A, (1), P, (1), 2, (1), By (1)..... 5 (1)}

and the estimates of  the constants
{a(2,1), a(3,1), a(6,1),...,a1 5(1)} obtained in the
given paper allow us to state that they are equal to
a(4,1)5 0.3798 on the set of the first ten million

prime numbers with an accuracy of four decimal
places. This fact allows us to conclude that all the
classes listed have the same number of primes, more
precisely, the number of primes in sets are of order
n =3798000 , i.e. difference:

‘([Pai(l)| h

It can be argued that with increasing 7, the
relative value of this difference will tend to zero. An

analytical study of classes P, (l) at n—o0 will
make it possible to establish whether the problem of

P, (1] < 10000 .

estimating c(a,i) on the basis of analytical number
theory is algorithmically solvable or estimating
Xc(a,i) for any values of @ >1 and i >1 can only

be obtained by computer simulation methods. The
substantiation of the possibility of this variant is the

fact that for a € {4,5,8,9,1 6} generalized constants

c(a,i) on the set of the first ten million prime
numbers differ significantly.

The dynamics of class formation in the
generalized Artin hypothesis.

Before forming the main provisions of the
proposed model for analyzing classes of sets:

_ {Pz(l),Pg(l),P6(1),P7(1),Pm(1), } )
R (1). P, (1).R;(1). B, (1) P5(1)

Constructed on the set of the first ten millions
of prime numbers, we draw attention to two facts
that will be the subject of further research in this
class of dynamical systems, and therefore the
associated number theory in the most general sense.
First of all, the solution of the structural analysis
problem of the reduced system of the set of primes
must be represented in such away that the

constructed model can be generalized to the case of
all positive integers less than the prime number p, ;

i.e. ten millionth number, which is equal to
P,y =179424673 .. The generalization to the set of

all natural numbers is of interest both from the point
of view of the study of dynamical systems, and
number theory. In addition, the results and methods
developed should be presented in a form that would
allow them to be transferred to the values of a >16.
The possibility of such a generalization is necessary

because the classes P, (l) for the values of k>4

will have a structure different from the structures of
classes P4(2m),Pg(2m),Pl6(2m) at m=>1 due to

the fact that in the cases under consideration the
structures of the classes are quite different. If we
prove analytically that these differences will remain

for all P, (i) at any k>4, then this will serve as

a justification for the correctness of the statements:
Statement 1. For any @ >1 there are many

generalized Artin c(a,i) constants such that the
equalities hold:

ﬁ(x,a,i): c(a,i)-ﬂ(x); ©
ic(a,i)zl

i=1

Statement 2. The problem of obtaining an
asymptotic estimate of c(a,i) forany a>1, i>1
is not solvable by analytical methods.

Statement 3. The problem of estimating C(a,i)

is algorithmically solvable by computer simulation
methods, but it has subexponential complexity.

In the following, in this paper, attention will be
focused on Statement 3. Proof of Claims 1 and 2 will
be outlined to alimited extent due to the need to
create an analytical method based on analytic
number theory, which goes beyond computer
modeling methods. In addition, the deepening and
development of methods for proving Statement 3
will require developing algorithmic reducibility
methods according to the complexity [10] of the
developed algorithms to algorithms with a known
measure of computational complexity [11]. The need
to involve the mathematical theory of algorithmic
reducibility is primarily due to the fact that, for any
prime number p € P in the process of computer
modeling, it was necessary to systematically prove
its simplicity and decompose p—1 into simple
factors, 1.e.:

p-1=[]pr".
i=1
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To solve these two problems, the developed
algorithm was used based on the theory of elliptic

curves [12], while parallelizing the number p—1,
the simplicity of the number p was proved. The

algorithm has subexponential complexity, which
increases significantly with increasing number p . If

the value is p>10'"", then the computational

complexity increases to such an extent that the
sequential analysis of a large set of prime numbers
of large reduced boundaries becomes impossible
without using powerful modern computers [1, 2].

To solve the problem (6) on the set (5),
a software complex was created in the form of the
text of computer algebra programs, with which,
based on the developed method of experimental
mathematics, a systematic analysis of 500,000
consecutive primes was carried out regularly shifted
by this value. Thus, many of the first ten million
primes were analyzed. For each a € P (6) a set of
classes was built:

P, =AP(1).P,(2).... B,(k)...} (7

a0’
which were the object of analysis. When
constructing these classes, on each interval, 500,000
consecutive prime numbers were used to construct
classes, and the properties of both p primes from

these classes and the decomposition of p—1 into
prime factors were studied. The information about
the P, has united in the set of P 10 i.e. for each

a >1, classes (7) were built on the set of the first
ten million prime numbers that were the object of
analysis. Table 1 shows the calculated values of the
generalized Artin constants [7, 8].

From table 1, it follows that relation (6) is
ideally satisfied. The results will be subject to
further analysis.

Regardless of this class of computational
algorithms, there will be a systematic need to solve
the problem of the dimension of the classification
space of a set of numbers, with respect to a certain
measure, which in the particular case may be
a correlation function between samples of prime
numbers from one with a given basis [6].

Structural analysis of classes of generalized
Artin's hypothesis

The systems of classes for a € {4,9,1 6} satisfy

the system of equations (6), but exclude them from
further consideration because these numbers are
perfect squares and, due to Fermat's small theorem,
are not primitive roots of any prime number p .

Therefore, for each such ae{4,9,16} classes

Pa(2k+1) for k € {0,1,2,...,}1,...} there are empty
sets. Their systems of classes
{Pa (2),P (4),...,Pa(2k),...} describe subgroups of

groups of residues (Z | pZ ), but they do not contain

the generated elements of groups. Although Artin’s
generalized hypothesis is valid in this case as well, it
does not belong to Artin’s classical hypothesis. This
case requires a separate analysis.

The set  {2,356,7.8,10,1112,13,14,15}
contains two elements {5,8}, which require
a separate analysis. Although 0(5,1)20.3936.. is
close to the knowledge of 0(2,1)5 0.3739..,
nevertheless, this constant differs significantly from
the others, by the value of A =0.012... This
difference requires analytical substantiation. But the
most important thing for a =35 is that all classes:

P,(5), P,(15), P,(25)...., P,(10k +5)...

empty sets. Analysis of the causes of such
astructure  requires  aseparate  mathematical
consideration. The case of a=8 is also an

exception in this paper due to the fact that the
constants of the set {c8 (1), Cq (2),..., Cq (k),} evenly

satisfy relation (6), but their values differ
significantly from the case when

ac {2,3,6,7,1 0,11,12,13,14,1 5}. For the same

reasons, case @ =8. At this stage will not be
considered.

From table 1 it follows that in accordance with
the results of computer simulation the following
equality is true:

Cz(l)z 03(1)z Cﬁ(l)z ¢y (l)z clo(l)z

~c5(1)~0.3739..

where ¢; and |£l.| ~ 0,0001 . The value of &, at

ie {2,3,6,7,1 0,....1 5} is quite explicable. If you go
from the first ten million to the first hundred million
and more, then the values of & will decrease. We

note that fact c,5(13)=0 was observed, which so
far is difficult to explain. In [5] for a=2 it is
proved that 02(1)50(2 EA(I) can be calculated
from the expression:

A1) = a, :H[l—p(%

j =0,3739 ..
p=2 p_ )

while p runs through all the sets of primes. No

other c, (l),06 (l),...,cls(l) values are given in the
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literature. At least, the analysis by Carella [5], the
review by Moree [4] and the dissertation work by

Ambrose [3] do not give such data. Note that c, (1)

for ae P(S) in our computational experiment
fluctuates, and this is natural due to the fact that the
Sets  {P, (1), A (1). £ (1) £, (1), By (1), (1)}, in
addition to the common primes for all pairs of
(Pa’ (1), F, (l)), have different prime numbers. Such

differences exist for all pairs of (i, j) at i # j.Even
if we assume that in calculating ¢, and A(l), only

primes p were considered, for which a=2 is

a primitive root, then the differences of Artin's
constants [6, 4]:

a2=1_[(1—p(;

J =0,3739558 | 6677689 .. (8)
p=2 p - 1)

1
AN =TT 1-——— |=0,3339558 136192 .. (9)
0 H( Q(q—l)J |

q=>2
c,(1)=0,3739|850.. [7.8]

Not in favor of (8) and (9) due to the following
considerations. The estimates (8) and (9) were
calculated using the same model, and therefore
should not be different. Evaluation (10) begins with
the fifth decimal place, i.e. on A =0.00003 more
and with further clarification cannot be reduced due
to the fact that:

(10)

Continuation of the Table 5

- |-0%..9.
107107 1)) "=

Will not change the first six decimal places. At
least «, and A(l) should be the same and if they

cannot be less than c, (1) by |€| =0,00003 . This

fact will lead to the conclusion that analytical
evaluations are less accurate for @ =1 than
computer simulation results.

The main result obtained in solving the
generalized Artin hypothesis is that equality (6)
always holds. All options for solving the Artin
problem in a generalized form already at the initial

stage, when a €{2,3,5,6,7,8,10,11,12,13,14,15} is
divided into several classes
{23,6,7,10,11,12,13,14,15}, {5}, {8}. Analytical
methods of number theory are unlikely to find
a pattern for the formation of sets P, (1) for a>1.
This may be due to the fact that, as can be seen from
table 1, the set of primes for any a > 1.

{2,(1).P,(2).... P, (k),..} (11)

With the growth of the index k classes P, (i)

power, therefore, and the composition are
significantly different. Following the Gddel theorem
[10] and the study of the existence of algorithmically
unsolvable problems [11], it can be argued that there
is no single algorithm for solving the generalized
Artin hypothesis in analytical form. However, the
obtained and presented results allow, using computer
simulation methods of a set of classes, can be built
with any desired accuracy. The computational
complexity of the algorithm of such a model belongs
to the class NP of complete problems [11].

Since such an algorithm for modeling the
formation of classes (11) on the basis of the theory
of residues and the small theory of Fermat [1,2]
exists for any a >0, it follows that both Artin’s
original hypothesis and its generalizations are
correct and there are many factors:

{c(a,l), c(a,2),..., c(a, k),....}

It is a probabilistic model of the distribution of
primes by classes (11) for any a >1. Thus, the
validity of Statement 1 can be considered proven.
This does not yet imply the validity of Statement 2.
It can be argued that the structures of the resulting
classes for 2 < a <1 are not sufficiently stable from
the point of view of dynamical systems. Views of
the form:

f(a’p): xO :1’ 'xm+l Ea'xn(rn()d p) (12)

for any a, an algebraic dynamical system is defined
on the set of prime numbers P . It can be
generalized to the whole set of natural numbers, and
even the set of integers. Such a generalization
requires a deeper study of the mapping (12) on N
or Z, or even on finite fields [2] or on elliptic
curves [2].

In order to construct an analytical proof of
statement 2, let us consider in what respect the set

{2, (1), A, (1), P, (1), 2, (1), By (1)..... RS(1)f  is  in

terms of common primes for all pairs of different
sets of prime numbers for which the numbers of the

set {2,3,6,7,1 0,..1 5} = A are their primitive roots.
The need for such an analysis follows from the fact
that fact P, (1)N P, (1)# 0 is obvious for any i # ;.
This simply follows from the obvious fact:

Y|P (1) =3,7-10

i€ed

While many of the ten million first prime
numbers are considered. The results of computer
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simulation of dynamic processes of class formation
in the generalized Artin theory were considered

ultimately for a et of ten million first prime
numbers, the data for P where i =1,2,...,32:

Table 1

The distribution of prime numbers in 1 to 8 classes in the generalized Artin’s conjecture

c(a,i)

P,

P,

Ps

Py

Ps

Pe

P

Ps

5]

0,373985

0,280489

0,066448

0,046711

0,018902

0,049834

0,008912

0,035125

a3

0,373917

0,29922

0,066558

0,056101

0,018952

0,03323

0,008936

0,014018

s

0

0,560942

0

0,093532

0

0,099675

0

0,070114

as

0,393683

0,265698

0,06997

0,066438

0

0,047271

0,00941

0,016645

e

0,374064

0,28049

0,066453

0,074829

0,018905

0,049844

0,008886

0,013984

a7

0,374107

0,282704

0,066437

0,068399

0,01885

0,050256

0,008888

0,017046

ag

0,224342

0,168306

0,19948

0,028059

0,011373

0,14956

0,005354

0,021072

g

0

0,598315

0

0,112226

0

0,066558

0

0,028052

aio

0,374061

0,280384

0,066512

0,071337

0,018883

0,049893

0,008915

0,01657

ar

0,374062

0,281339

0,066391

0,069482

0,018895

0,050026

0,008889

0,017287

ap

0,373982

0,29914

0,066479

0,056093

0,018903

0,033253

0,008979

0,01404

a3

0,376385

0,278704

0,066969

0,069688

0,019082

0,049535

0,009007

0,017438

a4

0,373924

0,280628

0,066491

0,070678

0,018928

0,049808

0,008922

0,017091

as

0,37393

0,279563

0,06645

0,070829

0,018896

0,050831

0,00893

0,017697

a6

0

0,374009

0

0,186933

0

0,066445

0

0,14028

The distribution of prime numbers in 9 to 16 classes in the generalized Artin’s conjecture

Table 2

c(a,i)

Py

Pio

Pll

P12

Pis

Py

Pis

Pis

A

0,007404

0,014146

0,003383

0,008313

0,002388

0,00673

0,003371

0,008798

a3

0,00737

0,015123

0,003406

0,024923

0,002385

0,007112

0,003348

0,003494

s

0

0,028317

0

0,016608

0

0,013399

0

0,017579

as

0,007762

0,028423

0,0036

0,011841

0,002513

0,006317

0

0,004117

de

0,007418

0,014166

0,003406

0,008294

0,002394

0,00668

0,003337

0,003516

a7

0,007413

0,014275

0,003375

0,012179

0,002398

0,00451

0,00336

0,004297

ag

0,022167

0,008466

0,002048

0,024902

0,001426

0,004048

0,010062

0,005277

dg

0

0,030311

0

0,049857

0

0,014278

0

0,006989

adjo

0,007392

0,014225

0,003457

0,0127

0,00239

0,006711

0,003352

0,004175

an

0,007427

0,014238

0,003415

0,012353

0,002362

0,006709

0,003357

0,004329

a2

0,007416

0,015156

0,003413

0,024947

0,0024

0,007124

0,003351

0,003503

a3

0,007444

0,01405

0,003403

0,012382

0

0,006638

0,003359

0,004372

a1

0,007403

0,014135

0,003427

0,012547

0,002377

0,006677

0,003367

0,004257

a5

0,007402

0,015104

0,003379

0,011795

0,002404

0,00666

0,003383

0,004413

16

0

0,018857

0

0,03323

0

0,00893

0

0,035089

Table 3

The distribution of prime numbers in 1 to 16 classes in the generalized Artin’s conjecture

c(a,i)

1:)17

1:’18

1:’19

PZO

P21

P22

P23

Py

a

0,001386

0,005539

0,001088

0,002369

0,001609

0,002558

0,000744

0,006233

a3

0,001382

0,003659

0,00109

0,002816

0,001577

0,002715

0,000734

0,006239

s

0

0,011109

0

0,00473

0

0,005103

0

0,01248

as

0,001442

0,005256

0,001163

0,007071

0,001686

0,002424

0,000783

0,002932
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Continuation of the Table 3

The distribution of prime numbers in 1 to 16 classes in the generalized Artin’s conjecture

c(a,i) Py Pis Pio Py P P» Py Pay
as 0,001395 | 0,005567 | 0,001077 | 0,003799 | 0,001606 | 0,002549 | 0,000745 | 0,006219
az 0,001356 | 0,005578 | 0,001084 | 0,00345 | 0,001565 | 0,002587 | 0,00073 | 0,003035
ag 0,000839 | 0,016616 | 0,000657 | 0,001425 | 0,004775 | 0,001541 | 0,000448 | 0,018728
a9 0| 0,00737 0| 0,005649 0 | 0,005448 0| 0,012445
ajo 0,001381 | 0,005537 | 0,001088 | 0,002365 | 0,001588 | 0,002539 | 0,000738 | 0,002924
a 0,001393 | 0,005536 | 0,001118 | 0,003503 | 0,001591 | 0,001693 | 0,000734 | 0,003096
ap 0,001356 | 0,003692 | 0,001111 | 0,002825 | 0,001587 | 0,002739 | 0,000738 | 0,006214
ans 0,001386 | 0,005461 | 0,001108 | 0,00352 | 0,001571 | 0,002542 | 0,000734 | 0,003078
als 0,001399 | 0,00554 | 0,001094 | 0,003583 | 0,001584 | 0,00254 | 0,000737 | 0,003042
as 0,001388 | 0,005628 | 0,001095 | 0,002823 | 0,001613 | 0,002534 | 0,000736 | 0,002955
a6 0| 0,007399 0] 0,00946 0| 0,003411 0] 0,024912
Table 4
The distribution of prime numbers in 1 to 16 classes in the generalized Artin’s conjecture
c(a,i) Paos P26 Pa27 Paos Pao Pa30 Paai P.3
a 0,000743 | 0,001803 | 0,000821 0,0011 | 0,00046 | 0,002513 | 0,000405 | 0,002176
a3 0,000736 | 0,00194 | 0,000814 | 0,001349 | 0,000463 | 0,001676 | 0,000407 | 0,000886
ay 0] 0,003598 0] 0,002243 0 | 0,005047 0 | 0,004397
as 0] 0,001694 | 0,000883 | 0,001595 | 0,000475 | 0,004998 | 0,000438 | 0,001047
as 0,000754 | 0,001801 | 0,000825 | 0,001802 | 0,000466 | 0,00252 | 0,000403 | 0,000872
a; 0,000764 | 0,001823 | 0,000818 | 0,003329 | 0,000462 | 0,002553 | 0,000408 | 0,001074
ag 0,000444 | 0,001083 | 0,002464 | 0,000656 | 0,000277 | 0,007577 | 0,000241 | 0,001298
a9 0] 0,003837 0] 0,002665 0] 0,003348 0]0,001765
a0 0,000768 | 0,001814 | 0,000809 | 0,001703 | 0,000457 | 0,002494 | 0,000396 | 0,001034
a 0,000759 | 0,001806 | 0,00081 | 0,00167 | 0,000472 | 0,002544 0,0004 | 0,00108
an 0,000736 | 0,001942 | 0,000814 | 0,001329 | 0,000457 | 0,001669 | 0,000401 | 0,000883
ans 0,000754 | 0,003586 | 0,000823 | 0,001657 | 0,000467 | 0,002517 | 0,000407 | 0,001092
als 0,000751 | 0,001806 | 0,000833 | 0,001119 | 0,000467 | 0,002521 | 0,00041 | 0,001074
as 0,000759 | 0,001778 | 0,000816 0,0017 | 0,000448 | 0,001659 | 0,000411 | 0,001105
16 0 ] 0,002401 0 ] 0,004469 0] 0,003363 0| 0,008779
Tables 1, 2, 3, (4 ;;resent estimates of the g for i,je {2’396,“.’1 5} where
generalized Artin cla,i) coefficients for sets .
{Pa (1),31 (2),..., P, (32)} and values of &7 ‘(P" (l)ﬂ £, (I)J/IO b/ {2’3’6”"’1 5}'

ac {2,...,32}. The relation (6) is satisfied. Consider

the set (5). Table 5 and 6 shows the numbers of
prime numbers in each of these sets, and in the
matrix in Fig. 1 shows the estimates of the values of

To analyze the structure of the common
elements of the classes of the set (5), we calculated
the power of the intersection of the sets of prime
numbers from the same class but with different
values of a .

Table 5
Calculated the power of the intersection P,..P ;s and P,..Pg of the sets of prime numbers
P(D) | P(D) [ P(1) | Py [ Pyl) P | Py(l)
Py(1) 3739850 | 1473 465 1619069 1473724 1473189 | 2243420
P3(1) 1473465 | 3739 165 1619473 1473840 1499886 1019963
Ps(1) 1619069 | 1619 473 3936827 1619982 1619637 1120427
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Calculated the power of the intersection P,..P;5s and P,..P; of the sets of prime numbers

Continuation of the Table 5

Py(1) Py(1) Py(1) Py(1) Ps(1) P5(1) Pg(1)

Py(1) 1473724 | 1473840 | 1619982 | 3740636 | 1474479 | 1020459
P,(1) 1473189 | 1499886 | 1619637 | 1474479 | 3741073 | 1019495
Ps(1) 2243420 | 1019963 | 1120427 | 1020459 | 1019495 | 2243420
Pio(1) 1328274 | 1473721 1619624 | 1474067 | 1474241 919445
Pyi(1) 1473861 1483252 | 1619653 | 1473915 | 1475645 | 1020038
Pix(1) 1473422 | 2947001 1619356 | 1474110 | 1499938 | 1019723
Pi3(1) 1491904 | 1492608 | 1639496 | 1492105 | 1492599 | 1032542
Pi4(1) 1473908 | 1473525 | 1618994 | 1499154 | 1473955 | 1020374
Pis(1) 1473266 | 1327012 | 1619169 | 1473986 | 1470552 | 1019609

Table 6
Calculated the power of the intersection P,..P;s and Pyy..P;s of the sets of prime numbers

Py(1) Pio(1) Pi(1) Pi»(1) Pi5(1) Pia(1) Pis()

P,y(1) 1328274 | 1473861 1473422 | 1491904 | 1473908 | 1473266
P3(1) 1473721 1483252 | 2947001 1492608 | 1473525 | 1327012
Ps(1) 1619624 | 1619653 | 1619356 | 1639496 | 1618994 | 1619169
Py(1) 1474067 | 1473915 | 1474110 | 1492105 | 1499154 | 1473986
P,(1) 1474241 1475645 | 1499938 | 1492599 | 1473955 | 1470552
Pg(1) 919445 | 1020038 | 1019723 | 1032542 | 1020374 | 1019609
Pio(1) 3740610 | 1473427 | 1474353 | 1492783 | 1473402 | 1474437
Py(1) 1473427 | 3740622 | 1483199 | 1492543 1472831 1472231
Pix(1) 1474353 | 1483199 | 3739824 | 1491979 | 1473741 1327337
Pi3(1) 1492783 | 1492543 | 1491979 | 3763849 | 1492599 | 1491965
Pu(1) 1473402 | 1472831 1473741 1492599 | 3739237 | 1472951
Pys(1) 1474437 | 1472231 1327337 | 1491965 | 1472951 | 3739304

Analysis of the structure of this matrix allows

us to conclude about the structure of the set
P, N P, (1). From equality:

(2, 0N, 0)]=[2, 0N P, 0))

follow that
provided

It does not
p,NP, (1)=r,0ONPL,1)
a,#a;#a,#*a,.

Table 5 and 6 shows the total number of prime
numbers for all pairs of classes identified. Analysis
of the table allows us to conclude that at the level of
primitive roots, almost all pairs of classes have
stable in power subsets of common primes of almost
the same power. This indicates the existence of
a general pattern of formation of these classes.

However, attention should be paid to classes P3(1)

and Plz(l) in which the proportion of common

primes is close to 0.8. This fact confirms the
assumption that the possibility of an analytical

description of sets P, (1) for an arbitrary primitive

root a >1 is improbable. It is necessary to improve
both computer simulation methods and the
development of an analytical theory of the formation

of classes of primes in classes P (1) as functions a .

The study of classes P

a

a>1 and k € N is a separate problem, the solution
of which is important both from the point of view of
studying algebraic systems and from the point of
view of studying systems of primitive roots of

(k) for arbitrary numbers

proper subgroups of group (Z | pZ )* forany pe P.
This problem can be generalized to the case of
(Z/nZ)* where 7>1 is an arbitrary natural

number.
A key question arises: What properties of
natural numbers from the set

{2,3,6,7,1 1L12,13,14,1 5} cause the established fact:
c2.)=c(31)=c(6,])=..=c(151)=0.37379...
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AHAJII3 CTPYKTYP AJITEBPATYHUX JUHAMIYHUX CUCTEM HA OCHOBI
KOMITBIOTEPHOT' O PIIIEHHS Y3AT'AJIbHEHOI I'IMTOTE3U APTUHOB

I'. M. Boctpos, P. 0. Onsita
Ooecokuil HaYIOHANbHUL NOJTMEXHIYHUL YHIGEepCUmem

Anomauia. B pobomi posenaHyma ysazanvhena cinomesza Apmina. Hagedeno awnanis aneebpaiyHux

OUHaMIYHUX cucmem Ha Oe3niui npocmux uucen. Bugueno enacmugocmi ounamiunux cucmem aneebpu. Ha
OCHOBI KOMN'TOMEPHO20 MOOeIO8aHHA NOOYO0BAHO piuleHHs V3azanbHeHoi cinomesu Apmina. Tlobyoosana
Knacugirayis npocmux uucen 0asi Oy0b-K020 Hamypaibhno2o uyucia a > 1. JJocuioxceno enacmusocmi
Kaacie npocmux uucen. Po3pobneno memoo cmpykmypHo2o aHanizy aneeOpaiuHux OUHAMIYHUX cucmem 3
OMUBLKUMU 3HAUEHHAMU V3a2albHeHux KoHcmanm Apmina. Bemarnogneno wo 0ns 6y0b-axoco a > 1 koowcen
K1ac mae 8ipo2iony mipy, i cyma 3axo0ie Kiacie npazie 00 00UHUYI.
Y menepiwmiti uac gidomo eenuxa KilbKicmb MamemMamuyHux npooiem, wooo AKux, 6i0cymus aKka-He6yob
inghopmayis wodo ix poszs'szanns. B obnacmi cywacnoi meopii uucen eenuxuil nepeiik maxux npoonem 3
0emanbHUM AHAai3oM HA8eOeHo 8 MoHozpagisax i psadi inwux cmameil. OOHiero 3 makux npobiem € sinomesa
Apmina cghopmosana 6 1927 poyi. Bascnusor npodremoro meopii uucen € onuc 3aKony po3nooiny npocmux
yucen. [ane 3a60anus Oyno eupiwene Adamapom i Banne-Ilycenom, nesanedxncno ooun 6io ooHoeco, 6 1896
poyi.

Mooicna cmeepooicysamu, wo matidice cmo poxie zinomesa Apmina € 00'ekmom 0ocniodceHHs pyn
MaAmemMamuxie, OOCTIOHUYbKUX MAMEMATNUYHUX —YEHINPIE, VHIGepCUmemie a maxKolc I  OKpeMux
Mamemamuxie. B ocmanni poku 3'seunucsi GynoameHmanvhi 020U 6Cix HAYKOsux nyoaikayiti 6 mitl 4u
IHWIT MIPT CNPAMOBAHUX HA V3A2anlbHeHHA | npusamue piwwenus oanoi npooaemu. Cnio sudinumu 02nsioosy
cmammio Moree 3 documv enubOOKUM AHANIZ0M PI3HUX Memodie eupiweHHs npodoremu Apmina. B oensndi
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agmopa 075 8UNAOKY NpU3600UmMb OYIHKY sIKA € KoHcmanma Apmina mobmo . /lana oyinka xoHcmaumu
Apmina ons ompumana na ocnoei eupaszy A(l), oe 6esniu ecix npocmux uucen. B pobomi Moree ne
HABOOUMbCSL AHANIMUYHI OOKA3 YbO2O CNIBBIOHOULCHHSL.
Y3acanvuena cinomesa Apmina. Aneebpaiuna ounamiuna cucmema. Komn'tomepue piwwenns ysazanvuenoi
einomesu Apmina. Knacughixayis npocmux wucen 3a ochogorw a .

Knrouosi crosa: Ysacanvuena cinomesza Apmina. Aneebpaiuna Oounamiuna cucmema. Komn'romepue
piwenns y3azanvreroi einomesu Apmina. Knacugixayis npocmux uucen 3a ocHogorw a .

AHAJIA3 CTPYKTYP AITEBPAMYECKUX TUHAMUYECKHUX CUCTEM HA
OCHOBE KOMIIBIOTEPHOI'O PEHIEHUA OBOBIIEHHOU I'MITOTE3bI APTUHA

I'. H. Boctpos, P. FO. Onsita
Ooecckuil HAYUOHATBHBIT NOAUMEXHUYECKUL YHUBEPCUEm

Aunnomayusa. B pabome paccmompena o060bwennas eunomesa Apmuna. Ilpuseden ananus
aneedpauieckux OUHAMUYECKUX CUCMeM Ha MHOdcecmsee npocmuix uucel. Ha ocnoee komnviomeprozo
MOOenuposanusi nocmpoeno peuienue 060o6ujennol ecunomesvl Apmuna. Ilocmpoena knaccuguxayus
npocmelx uucen 0 106020 Hamypaiwho2o uucia a > 1. Paspaboman memoo cmpykmypho2o anaiusa
aneebOpaudecKux OUHAMUYECKUX CUCEM ¢ OIUSKUMU 3HAYEHUAMU 0000UeHHbIX KOHCmanm Apmuna.

Knwuesvie cnosa: Obobwennas ecunomesa Apmuna. Aneebpauyeckas OuHamMuyecKas cucmema.
Komnviomepnoe pewenue oboowennoii eunomesvl Apmuna. Kiaccugurxayus npocmulx uucen no
OCHO8aHUIO A .
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