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Abstract 

Diagnostics of stability of the cores constructions, elements of the carrier system of the ship and port 

facilities, reduces to the definition of critical forces, excess which causes a transition of the system from one 

equilibrium state to another. Such a transition often leads to the destruction of the constructions or other 

forms of accidents, and therefore it is extremely undesirable and for practice it is important to knowledge of a 

specific spectrum of critical forces and their corresponding forms of loss of stability. 
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1. INTRODUCTION 
 

Elements of load-bearing structures of ships and 

port structures are loaded with significant external 

loads. These loads cause a state of compression 

both in all elements and in individual parts of 

structures. The danger of such a state lies in the 

interaction of the loss of stability and the transition 

of the structure from one equilibrium state to 

another. Note that in this case, external loads can be 

significantly less than the limiting ones. Therefore, 

for the safe operation of such structures, it is 

necessary to diagnose the spectrum of critical 

forces at which stability loss occurs. This 

diagnostics can be carried out when analyzing the 

stability models of elastic systems, where to 

increase the accuracy, the shift and inertia of 

rotation of rectilinear cores are additionally taken 

into account. 

All loads on elastic systems can be 

conventionally divided into conservative and non-

conservative ones. Conservative loads include so-

called "dead" forces, when their line of action 

moves along with the construction only in parallel 

with the original direction. This can not be said 

about non-conservative forces. Systems with non-

conservative forces are widely used in the life of 

modern society. Such systems include systems with 

internal energy sources, i.e. rockets, planes, space 

orbital stations, drill rigs and platforms, 

automobiles, ships, submarines, turbines, internal 

combustion engines, metal cutting machines, 

various cranes, instruments, etc. 

If conservative stability problems can be solved 

by a static method, non-conservative problems are 

solved only by the dynamic method [1]. The main 

element of the dynamic method is the solution of 

the Cauchy problem for transverse oscillations of 

the core, taking into account the longitudinal force. 

In contrast to the statistical method, the critical 

force in the dynamic method is determined at the 

point where become equal (merging) two 

neighboring frequencies of the eigen oscillations. 

For this purpose, the calculation of the entered 

the initial value reduces the force, and the 

frequencies (at least two) of the eigen oscillations 

are fixed. Further, the value of compression force 

increases and the frequency variation is monitored. 

The process continues until the two neighboring 

frequencies become equal with certain accuracy. 

The value of compression force in this case will be 

critical. 

The necessity of applying the dynamic method 

greatly complicates the decision of non-

conservative stability problems. This requires a 

very effective method for determining the 

frequencies of the eigen oscillations. Among other 

methods, in this respect, the IPE is highlighted. It 

allows to obtain the exact spectrum of frequencies 

(eliminates the shortcoming of the MCE), and in 

the transcendental frequency equation there are no 

break points of the 2nd kind (eliminating the lack of 

the method of displacement). Additional positive 

factors are the simple logic of the formation of a 

dynamic matrix of stability, the absence of 

operations of multiplication, circulation and 

addition of matrices, good stability of numerical 

operations in calculating a determinant and etc. 

The necessity of applying the dynamic method 

greatly complicates the decision of non-

conservative stability problems. This requires a 

very effective method for determining the 

frequencies of the eigen oscillations. Among other 

methods, in this respect, the IPE is highlighted. It 

https://doi.org/10.29354/diag/132555
mailto:varuwa@ukr.net


DIAGNOSTYKA, Vol. 22, No. 1 (2021)  

Orobey V, Nemchuk O, Lymarenko O, Piterska V, Lohinova L.: Taking account of the shift and inertia of … 

 

40 

allows to obtain the exact spectrum of frequencies 

(eliminates the shortcoming of the MCE), and in 

the transcendental frequency equation there are no 

break points of the 2nd kind (eliminating the lack of 

the method of displacement). Additional positive 

factors are the simple logic of the formation of a 

dynamic matrix of stability, the absence of 

operations of multiplication, circulation and 

addition of matrices, good stability of numerical 

operations in calculating a determinant and etc. 

 

2. ANALYSIS OF RECENT RESEARCH AND 

PUBLICATIONS  

 

There are no publications on diagnostics of the 

spectrum of critical forces of non-conservative 

stability problems taking into account shear and 

inertia of rotation. 

Equation (1) does not take into account the 

deformation of the shear and the inertia of the 

rotation under oscillations [1-5]: 
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Therefore, they describe well enough the 

transverse oscillations of the core with a large 

length-to-cell ratio (ℓ / h > 10) and at low 

frequencies. However, for framework systems of 

foundations for heavy adjacent to the port or 

shipyard equipment and similar structures, when 

ℓпв/пh  6, where n - number of tones of 

oscillations; h - characteristic cross-sectional 

dimension; ℓпв – is the length of the half-wave of 

the elastic line of the core, it is already necessary to 

take into account the shear and the inertia of 

rotation [3-6]. The problem of constructing more 

precise solutions for transverse oscillations of the 

core is also very relevant in the theory of stability in 

connection with the application of the dynamic 

method. The differential equation of the transverse 

oscillations of a straight-line core, taking into 

account the deformations of the shear and the 

inertia of rotation, was brought out by a prominent 

compatriot, a scientist prof. S.P. Tymoshenko [1]. 

His model is now proved as the most accurate and 

widely used in various problems of constructions 

mechanics [7-9]. For the application of the model 

of S.P. Tymoshenko in the problem of stability, 

needs to be supplemented its longitudinal force Fx. 

For this purpose, examined the rod, compressed 

guardian force F1 and the force of the F2, with a 

fixed line action (Fig. 1). 

 
Fig. 1. The core, compressed guardian force 

and force with the fixed line of action 

 

3. PURPOSE OF THE WORK 

 

The purpose of the work is to diagnose the 

spectrum of critical forces based on the analysis of 

models of transverse vibrations of structural 

members based on the properties of Timoshenko 

beams, where it is possible to additionally take into 

account the shift and inertia of rotation. More 

precise mathematical models that allow you to 

specify the values of critical force, it was very 

important in practical terms for various engineering 

constructions and machines. 

 

4. SUMMARY OF THE BASIC MATERIAL  

 

We perform the diagnostics of the spectrum of 

critical forces using the numerical-analytical 

method of boundary elements [1]. This method 

allows you to create models of stability of rod, plate 

and shell structures, which are structural elements 

of port and ship structures. 

Let us imagine non-conservative combinations 

of stability, when in one construction there is a 

combination of different variants of the behavior of 

compressive forces. As an example, let us consider 

the definition of the critical forces of the free frame 

in combination of guardian force with different 

variants of the behavior of compressive forces. 

Suppose that a monitoring force is applied to the 

frame node 1 (Fig. 2), and in the node 2 is a force 

with a fixed action line. In this case, this will be a 

combination of non-conservative the problems of 

M. Beck and V.I Reuta. 

Equations of equilibrium of node 2 will take the 

form: 
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As a result, in the dynamic stability matrix A, 

two compensating elements A (13,16) = F / EI and 

A (14,7) = -F / EI are added, that is, there is a 

variable topology, due to 2 elements. By varying 

the parameter F of the rods 1-3 and 4-2 (in the 

matrix A, for the rod 4-2, we need to use the block 

of fundamental functions of equation (1)), we fix 

the changes of the frame frequencies. The graphs i 

= f (F) are shown in Fig. 3. 
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Fig. 2. Scheme of the frame 

 

 

Fig. 3. The graphs i = f (F) 

 

In this case, the frame first enters the flutter and 

F1 = 19,162EI / ℓ2 at тEI8,3 , and then the 

type of loss of stability takes place in Euler , then 

the flutter comes to the second time with F2 = 

72,056EI / ℓ2, etc. It can be seen that two non-

conservative forces significantly reduce the first 

critical force (F1 = 121,78EI / ℓ2), and F1 = 

19,162EI / ℓ2 is only 2.5 times the first critical 

force at dead forces (FE1 = 7,66EI / ℓ2; FЭ2 = 

27,35EI / ℓ2). 

If, in the frame node 2, force is applied with a 

line of action passing through a fixed point, then its 

equilibrium equations will appear as: 
12
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Then the compensating elements A (13,16) = 0; 

A (14,16) = F / rEI. The remaining nonzero 

elements of the matrix A are unchanged. The study 

of the behavior of frequencies showed that they all 

tend to zero, each separately, i.e. Only the Euler 

type is the loss of stability. 

Applying in the node 2 the "dead" force F, we 

obtain the equations of its equilibrium: 
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In comparison with the previous case, A (14,16) 

= 0. In this case, the frequencies of the eigen 

oscillations of the frame (each individually) tend to 

zero. Consequently, the combination in an elastic 

system of non-conservative and conservative 

forces, when the parameter F grows proportionally, 

does not lead to a flutter or divergence. 

The MGE can solve even more complicated 

non-conservative stability problems, which are 

described by differential equations with variable 

coefficients. Such tasks are encountered in aircraft 

and rocket construction, when the variables are 

rigidity, core mass, or longitudinal compressive 

force. In this case, the core is sampled into separate 

parts, within the limits of which a correct 

differential equation with constant coefficients is 

considered, i.e. a system with distributed 

parameters is replaced by a set of systems with 

constant parameters. The following is an analysis of 

the behavior of the frequencies of the eigen 

oscillations of the sample system. 

Application of the model S.P. Tymoshenko 

More precise solutions of differential equations 

open up new possibilities when solving various 

problems, including stability problems. In the case 

of non-conservative stability problems of a 

rectilinear core, it can be noted that the problems of 

M. Beck and V.I. Reuta is sufficiently well 

investigated only on the basis of approximate 

solutions (1). The desire to clarify the existing 

results led to the appearance of works 1, 7, 8–11 

where the model of S.P. Tymoshenko was used. In 

these papers only the problem of M. Beck was 

studied, and in an incomplete measure. In this 

connection, scientific and practical interest raises a 

more complete and detailed solution of non-

conservative problems, which we will consider in a 

combined form (Fig. 1). 

Consider the simultaneous action of forces F1, 

F2. The linear boundary conditions of this problem 

are quite simple: 

0)0()0(  EIEIv ; )()( 2  vFM  ; 

                                 )()( 2  FQ  .                           (5) 

For x = ℓ and given boundary conditions, 

equation (1) is reduced to the form (B = 0). 
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For F2 = 0, the equation А (,Fх)= 0= 0 

represents the task of M. Beck , while F1 = 0, the 

problem of V.I. Reut based on  the model of S.P. 

Tymoshenko, i.e. Additionally, the shear, the inertia 

of the rotation and the deformed condition of the 

rod are taken into account. Determining the method 

of sequential selection of the roots of the equation 

and the coordinates of the points of the fusion of the 

first two frequencies, one can find the critical forces 

of various non-conservative problems stability. The 

results obtained are summarized in Table. 1. 
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Table 1. The critical forces of various non-conservative 

problems stability 

Problems 

stability 

The 

coordinates 

of the points 

of merging 

the first two 

bands 

The relationship the height to the width of 

the cross section   h/b; 

A= b h = 0,01 m2 

1,0 2,0 3,0 4,0 
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If the longitudinal forces (F1 = F2 = 0) are not 

taken into account in coefficients a1 - a4, b1-b4 of 

expressions (3), then equation (2) will describe the 

model of the hard rod, when the maximum 

deflections lie within (1/100 - 1 / 1000) ℓ. For large 

deflections, the longitudinal forces F1, F2 influence 

the bending moment and transverse force. In this 

regard, in Table 1, the critical forces are given on 

two core models - rigid (Fz) and conditionally 

flexible (Fg), as well as at different ratios of height 

and width of the section. The area of the section A 

= b h = 0.01 m2 at the same time did not change. 

Table data 1 allow to make a number of interesting 

conclusions. 

Problem of M.Beck. The shift of the shift, the 

inertia of the rotation and the deformed state of the 

core slightly increase the critical force. In the rigid 

model with ℓ / h = 10, the refinement is 4.69%, 

while the flexible is 2.59%. Changing the ratio h / b 

has little effect on the magnitude of the critical 

force. 

Problem of V.I.Reuta. The flexible model 

results in a significant reduction in critical force 

(2,12 times) compared to a rigid model. Thus, a 

force with a fixed line of action is more dangerous 

than the angle of rotation of force. 

 Combined problem. The joint action of the 

forces F1 and F2 leads to a greater critical force 

than the case of the action of one force F2, which is 

not possible with conservative compressive forces. 

In a rigid model, all frequencies tend to zero, i.e. a 

certain combination of non-conservative forces can 

lead to conservative problems. 

Let us consider the problem when the free core 

is loaded at the boundary points by the forces F1 

and F2 (Fig. 4). 

 

 

Fig. 4. Free core loaded at the boundary 

points 

 

Let us consider the problem when the free core 

is loaded at the boundary points by the forces F1 

and F2 (Fig. 4). 

The boundary conditions of this problem: 
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We give the matrix of stability of the form: 
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To exclude the zero leading elements of this 

matrix (in the hard model), its rows need to be 

rearranged in a new order, as shown by the numbers 

on the right. The critical forces of this problem for a 

square cross section and ℓ / h = 10 assume the 

values: 

F1 = 0; F2 = F 
2982,1 EIFg   at mEI87,2 ; 

        
288,30 EIFz   at  mEI48,9 ,      (10) 
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i.e. for a free core the ratio of the critical forces of 

rigid and flexible models sharply increases in 

comparison with the console core, 

F1=F2=F; 
2028,3 EIFg  at mEI67,2 .(11) 

The remaining cases of the action of the 

compressive forces in Fig.4 lead to conservative 

problems. 

Let's consider the case - a console core with a 

discrete arrangement of forces F1 and F2. 

For definiteness, we assume that one force is 

applied in the middle of the span, the other at the 

free end. The core is sampled into two parts, where 

the arrows indicate their beginning and end (Fig. 5). 
 

 

Fig. 5. Console core with a discrete force 

arrangement 
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After transferring the parameters from Y to X *, 

the frequency equation will take the form of the 

matrix 8X8. 

The compensating elements of the matrix are 

determined by the expressions: 

core 0-1 

EIAaA 13415 1
; EIAbA 14216 


; 

EIAaA 23425 
 ; EIAbA 24226 1

;

  EIAaA 133435 
; EIAbA 34236 


;  

137 A ; EIAbA 43245 


;      

              EIAbA 144246 
;  148 A ;         (13) 

core 1-2 

EIAaA 13451 1
; EIAbA 14252 


;

EIAaA 23461 


; EIAbA 24262 1
;

  EIAaA 133471 
; EIAbA 34272 


; 

  EIAаA 43481 


;      EIAbA 144282 
.    (14) 

Let's consider the problem when the rod is 

compressed by two forces F1 (Fig. 5) or a square 

cross section and ℓ / h = 10 it follows that 

    
279,13 EIFg   at mEI08,10 ;          

            
202,15 EIFz   at mEI62,10 .   (15) 

The core is compressed by two forces F2. 

In this case, the compensating elements of the 

matrix will change: 

core 0-1 

115 А ; 045362516   АААА ; 126 А ; 

EIFА /235  ; 137 А ;   EIFА /246  ;            

                                     148 А ;                       (16) 

core 1-2 

151 А ; 081726152   АААА ; 162 А ;            

              EIFА /271  ;     EIFА /282  .         (17) 

 

The critical forces of this problem will be equal 
260,6 EIFg    at   mEI55,14 ; 

      211,13 EIFz   at mEI02,12 .       (18) 

The core is compressed at point 1 by force F1, 

at point 2 by force F2. 

The compensating elements of the matrix will 

be equal to the expressions (10) for the core 0-1 and 

the expressions (11) for the core 1-2. 

Critical force can only be determined for a 

flexible model: 

           268,7 EIFg   at mEI55,14  .   (19) 

The core is compressed at point 1 by force F2, 

at point 2 by force F1. 

Critical force is determined only for a flexible 

model 

         257,10 EIFg   at mEI82,11 .    (20) 

For comparison, let us quote the critical force 

with two dead forces: 

                            2

1 067,2 EIF  .                   (21) 

From the presented results it follows that in the 

combined problems the reduction of critical forces 

in various degrees is observed in comparison with 

the problems of M. Beck and V.I. Reuta. 

 

5. CONCLUSIONS  

 

The models of stability of cores and core 

systems are presented in the paper based on more 
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precise equations of transverse oscillations of 

Professor Timoshenko, where the shift and inertia 

of rotation are additionally taken into account. The 

highly effective method of investigation - the 

numerical-analytic method of elemental elements 

developed by the authors - was used to obtain a 

number of new results on the behavior of elastic 

rods and structures under the action of compressive 

non-conservative forces. The critical strengths of 

the reengineering tasks are high accuracy and 

worthwhile, which is important in the scientific and 

practical terms. 

Thus, we can conclude that the problems of 

diagnostics of the spectra of critical forces of 

mechanical systems have been solved with a high 

degree of reliability and accuracy. 
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