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MATHEMATICAL MODELING OF INTERNET OF THINGS 

TRAFFIC IN AD-HOC NETWORKS WITH HYBRID 

ROUTING 
І.В. Прокопович, О.С. Лопаков, В.В. Космачевский, Ю.І. Бабич, П.А. Швагирев, О.В. Денисова. Математичне моделювання 

трафіку Інтернету Речей в AD-HOC мережах з гібридною маршрутизацією. У даній роботі розглядається вплив трафіку Інтернету 
Речей, який формується системами моніторингу і диспетчерського управління або іншими системами, коли властивості цього трафіку 
описуються властивостями регулярного потоку. Оцінюється вплив цього трафіку на такі основні показники QoS як затримка доставки 
даних і вірогідність втрат. В якості моделі мережі зв’язку розглядається система масового обслуговування (СМО) з комбінованою 
дисципліною обслуговування. Аналіз тенденцій розвитку інфокомунікаційної системи показує, що в перспективних мережах зв’язку 
істотно збільшиться частка трафіку ІР, що призведе до його впливу на якість обслуговування. З урахуванням того, що трафік в мережі 
буде містити і трафік телеметрії, цей вплив може чинити істотний вплив на якість його обслуговування. Сучасні  мережі AD-HOC 
побудовані на основі принципу «усереднення». Згідно зі статистикою, безліч потоків даних з випадковими варіаціями щільності дадуть 
в результаті якийсь усереднений трафік. Але цей підхід не працює в мережах, схильних до прояву потужних пікових викидів. Такі 
своєрідні, локалізовані в часі «стовпотворіння» (congestions) викликають значні втрати пакетів, навіть коли сумарна потреба всіх 
потоків далека від максимально допустимих значень. Це негативно позначається на ефективності використання пропускної здатності 
мереж. Класична пуассонівська модель трафіку, яка використовувалася при проектуванні мережевих протоколів, не відображає 
реальної дійсності: дані реального мережевого трафіку мають властивість самоподібності. 

Ключові слова: Інтернет Речей, (IoT), AD-HOC-мережа, функція автокореляції, математичне очікування, дисперсія, 
коефіцієнт Херста, найпростіший і самоподібний потік 

I. Prokopovych, O. Lopakov, V. Kosmachevskiy, Y. Babych, P. Shvahirev, O. Denysova.  Mathematical modeling of Internet of 
Things traffic in AD-HOC networks with hybrid routing. This paper considers the impact of Internet of Things traffic, which is formed 
by monitoring and control systems or other systems, when the properties of this traffic are described by the properties of the regular flow. 
The impact of this traffic on such key QoS indicators as data delivery delay and probability of loss is estimated. As a model of 
communication network the system of queuing (SMO) with the combined discipline of service is considered. The analysis of trends in the 
development of the infocommunication system shows that the share of IP traffic in promising communication networks will significantly 
increase, which will lead to its impact on the quality of service .Given that the traffic in the network will also include telemetry traffic, this 
impact can have a significant impact on the quality of its service. Modern AD-HOC networks are based on the principle of “averaging”. 
According to statistics, many data streams with random variations in density will result in some average traffic. However, this approach does 
not work in networks prone to strong peak emissions. Such peculiar, time-localized “congestions” cause significant packet losses, even when 
the total demand of all flows is far from the maximum allowable values. This negatively affects the efficiency of network bandwidth 
utilization. The classical Poisson model of traffic, which was used in the design of network protocols, does not reflect the real reality: the 
data of real network traffic have the property of self-similarity. 

Keywords: Internet of Things, (IoT), AD-HOC-network, autocorrelation function, mathematical expectation, variance, Hearst 
coefficient, simplest and self-similar flow 

 
1. Introduction 
One of the most promising areas of development of telecommunication networks and ICS in gen-

eral is the implementation of the concept of the Internet of Things (IoT) [1], which appeared largely 
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due to the development of technologies and networks of wireless communication and means of receiv-
ing and processing information. This concept assumes an increase in the availability of information, 
unlimitedly expanding the concept of accessibility, both in the spatial and temporal domains (the 
availability of information about everything, everywhere and at any time) [2, 3, 4]. This formulation, 
in practice, does not limit the scope of application of IoT technologies, which creates the prerequisites 
for an increase in the number of corresponding devices − IoT network nodes. Along with this, one 
should expect changes in the properties of traffic served in communication networks. In the present 
time, a change in a number of traffic properties is noted, which is due to an increase in the number of 
automatic devices connected to the network that generate traffic, the properties of which differ from 
the properties of traffic produced by people. Such changes require the development of appropriate ap-
proaches to solving the problems of building IoT both in terms of traffic servicing and in terms of 
choosing a network structure. In this concept, Internet things (or just things) are understood as objects 
of the world around us (physical objects) or the information world (virtual objects). These objects 
must be identifiable, and it must also be possible to integrate them into existing communication net-
works. Accordingly, every Internet thing must satisfy two conditions: identifiability (be able to be ad-
dressed) and the ability to interact with the network, i.e. must have an appropriate interface. In fact, if 
these two conditions are fulfilled, an Internet thing can be considered as an element of a communica-
tion network, and since, potentially, it can have all the functions of network nodes, it can be consid-
ered as a network node. Depending on the used communication technologies and methods of building 
the IoT network, this can be an end node, which is a source or receiver of information, or, for example, 
a node that performs traffic transit functions. This creates potential prerequisites for the formation of 
network structures with a significantly higher density of nodes than was previously the case in tele-
communication networks. 

2. Analysis of publications and problem statement 
One of the priority directions of development of the infocommunication system is the organiza-

tion of the Internet of Things (IoT) [5, 6], the concept of which is reflected in [7]. The development of 
the IoT is an extremely important step, as it affects almost all areas of human activity. The penetration 
of the IoT will contribute to the availability of more and more information, the growth of opportunities 
for its analysis, the formation of decisions and actions based on its results. 

The second important direction in the development of the telecommunications system is ex-
pressed by the concept of the tactile Internet (TI) [8], which implies a significant increase in the re-
quirements for the quality of service (QoS) of traffic, which are imposed by new interactive services. 
An example is the construction of monitoring and dispatch control networks [9], in terms of the devel-
opment of IoT, telemedicine applications and unmanned vehicles. Comparing the construction of the 
IoT with the construction of telemetric and telemechanical systems [10], one can notice a lot in com-
mon. The fundamental novelty of these areas consists, first of all, in the potentially possible number of 
monitoring and control devices, in the possibilities of their penetration to the most varied levels of 
technological and other processes, as well as in the requirements for QoS, in particular, for probabilis-
tic and temporal parameters. The need to deliver data between a large numbers of devices, which po-
tentially can significantly exceed the number of subscribers of existing communication networks, sets 
the task of ensuring the availability, QoS, reliability and stability of the functioning of communication 
networks in such conditions. 

3. Unresolved problem area 
In view of the fact that the nature of IoT traffic, in general, differs from the traffic of other ser-

vices, it makes sense to assess its characteristics and impact on the quality of service. According to 
[10, 11, 12], the traffic generated by devices of the Internet of Things can be conditionally divided into 
three characteristic types: deterministic – produced by devices operating according to a rigidly speci-
fied schedule; deterministic technological − necessary to maintain the functioning of the system and 
mediated, i.e. generated as a reaction to some external events. The traffic generated by IoT devices can 
be served in conjunction with traffic from other communication services, for example, with traffic 
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from base stations of mobile communication systems, wireless broadband access points and other net-
work nodes. Such traffic has the properties of aggregated and must be investigated and modeled. 

4. Purpose of the article 
The aim of the study is to develop a mathematical model of IoT traffic in AD-HOC networks 

with hybrid routing, which will differ from the known models in that it will allow assessing the quality 
of service differentiated for each of the traffic flows entering the common service system. The article 
also explores the definition of aggregated traffic for the Internet of Things in AD-HOC networks. The 
proposed model and method of servicing the traffic of the Internet of Things make it possible to take 
into account its influence on the quality of functioning when choosing the parameters of the communi-
cation network serving it. 

5. Aggregated traffic in AD-HOC networks 
Aggregation of traffic in the network solves the problem of fault tolerance and summation of the 

capacity of data transmission channels involved in the aggregation. Typically, most traffic flows in 
modern networks are aggregated. They consist of many streams that form them. These are streams 
from various devices (users), streams of various services, etc. In data transmission networks, there are 
a large number of queues (buffers) for transmission in network nodes, which affect each other in the 
sense that a stream leaving one queue enters one or several other queues, possibly after merging with 
parts of other streams from any other queues. From an analytical point of view, this complicates the 
nature of the processes of entering the queues located in the direction of flow. The main difficulty lies 
in the fact that when packets are transmitted outside the first queue in relation to the point of their en-
try into the network, the intervals between the moments of packet arrival become strongly dependent 
(correlated) with the packet lengths, or rather with the time of their transmission. In real networks, 
when packet lengths and intervals between arrival times are correlated, numerical modeling shows that 
at high loads, the average packet delivery delay is less than in the ideal case, when there is no de-
scribed mutual dependence. However, in the case when the loads are small, the opposite is true. The 
development of data transmission networks has led to the widespread use and use of self-similar traffic 
models for modeling. The definition of self-similarity of traffic is often based on the autocorrelation 
function of the flow. Suppose that the target process is specified by the sequence X = (X1, X2, ..., Xt), 
where t = 1, 2, ..., N. 

Then its autocorrelation function can be defined as: 
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where N is the number of elements in the sequence; 2σ  − dispersion. 
An aggregated process (stream) means a process (stream) defined by a sequence of blocks. 

Blocks (elements of this sequence) are obtained from the original stream by averaging it over blocks 
of m consecutive elements. An aggregated process over blocks of length m can be written as: 
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Its autocorrelation function is lm(k). 
The flow X is strictly self-similar if lm(k) = r(k), for m = 2, 3, .., N. Also, the flow is strictly self-

similar if the autocorrelation functions correspond to formula (1), and for aggregated streams corre-
spond to formula (2) obtained from it when aggregating into blocks of arbitrary size. In this case, the 
autocorrelation functions of the original stream must be equal. In other words, the correlation coeffi-
cient does not change when the stream is averaged over blocks of arbitrary size. For example, combin-
ing multiple traffic sources with alternating periods A and B creates aggregated traffic that is self-
similar. Aggregated data transfer traffic can be viewed as a superposition of sources that transfer the 
requested file during a certain period A, and period B corresponds to the time interval between trans-
fers. The characteristics of such traffic appear to be robust to network operations such as splitting, ag-
gregation, queuing, management, and shaping. Self-similarity is preserved when homogeneous and 
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heterogeneous, that is, independent, traffic sources are superimposed, and this property takes place 
under a wide range of conditions: both in cases of changes in bandwidth and buffer capacity and when 
mixing with other traffic. 

In IoT networks, aggregation of flows occurs in relation to traffic flows produced by terminal de-
vices, i.e. internet things. Depending on the structure of the IoT network, traffic aggregation can occur 
at different levels. For example, in a star structure, which is typical for data collection networks, traffic 
aggregation occurs at the gateway level (or gateways if there are several). In networks of a tree struc-
ture, aggregation of flows also occurs at the level of transit nodes of the network, which, in most cases, 
can be Internet things themselves. It is also worth noting the features that arise when using wireless 
technologies for organizing an IoT network. They consist in the fact that the properties of an aggregat-
ed traffic stream can be influenced by streams that are not actually part of this aggregated stream, but 
nevertheless affect its service. The reason for this is the use of a common distribution environment, 
which may be busy serving a third-party thread at some points 
in time. This effect complicates the analysis, but it can be tak-
en into account when choosing the properties of the aggregated 
flow service system in the IoT network model. 

For the analysis, the model shown in Fig. 1 was chosen. It 
consists of an IoT traffic generator that simulates the operation 
of one device and a traffic generator for traditional communi-
cation services and TI traffic, which is denoted as H2H + TI. 
The generated traffic flows arrive at a communication node, 
the model of which is represented by a queuing system with a 
combined service discipline (with waiting and failures). The 
average service time of a packet (message) is t . 

We will denote the traffic intensity of the Internet of Things as IoTλ  and the H2H traffic will be 
denoted as H2Hλ , the intensity of the aggregated flow IoT H2Hλ = λ + λ . With a certain probability ρ, the 
packet arrives at the input of a system in which all positions in the queue are occupied and gets reject-
ed (losses occur). At the output of the system, the aggregated flow has a total intensity λ . The proper-
ties of the mixed stream at the input of the system are determined by the properties of both streams; 
therefore, in general, they differ from both the properties of traditional traffic and the properties of IoT 
traffic. The operation of this system will be characterized by indicators of the quality of service: the 
probability of losses (refusals) of packets (messages) and the delay in packet delivery (waiting time in 
the queue and service time). Various services generating traffic in the communication network have 
specific requirements for the values of the quality of service indicators. The process of servicing pack-
ets (messages) affects the properties of the served traffic, which then enters other network elements; 
therefore, the properties of the served traffic at the output of the system are also of significant interest.  

When studying the mutual influence of the traffic flows, the quality of service indicators sepa-
rately for IoT and H2H traffic flows will be evaluated. 

IoT traffic service model 
The model of the queuing system described above can be represented as the G/G/1/k system. For 

this system, there are no accurate analytical models that allow us to estimate the probability of packet 
loss and delivery delay (waiting time in the queue). In [13], the diffusion approximation method is 
used to estimate the probability of losses in such a system with known distribution parameters describ-
ing the traffic at the input and the packet service process, and the following expression for an approx-
imate estimate is obtained: 
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vice time, respectively; bn  – buffer size; ρ – system boot. 
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Fig. 1. Aggregated traffic service model 
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An approximate estimate of the average packet delivery time can be obtained using [14]: 
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where 2 2,a sσ σ  – the variance of the time interval between packets and the service time; a   – the aver-
age value of the interval between packets; t  – average service time. 

Formula (4) determines the average packet delivery time for the general type of traffic. 
Since we are interested in a separate assessment of the quality of service of H2H traffic and IoT 

traffic, it makes sense to investigate the applicability of the above approximate solutions for assessing 
the quality of service of an aggregated traffic flow. We will assume that the human-to-human back-
ground traffic flow (H2H) has the properties of a self-similar flow (the value of the Hurst coefficient 
H = 0.7...0.9). This assumption is based on the fact that a large proportion of traffic in modern com-
munication networks is video transmission. As a rule, video playback by modern players generates 
self-similar (burst) traffic. Thus, this assumption about the properties of subscriber traffic is quite ac-
ceptable. Let's also make the assumption that M2M traffic is a deterministic flow, defined as a periodic 
process of sending data to the monitoring system. This assumption is based on the fact that in many 
cases M2M traffic is generated by monitoring and supervisory control (SCADA) systems that periodi-
cally poll the status of the sensors. 

Researching the Impact of IoT Traffic on Quality of Service 
To build a simulation model, the AnyLogic simulation system was chosen [15], which allows creat-

ing discrete event simulation models. To simulate a self-similar flow, a generator of a sequence of inde-
pendent events was used, the time intervals between which are random and have a Pareto distribution: 
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where mx  and k – distribution parameters. 
Based on formula (5), we determine the moments of a random variable. 
The mathematical expectation and variance are determined according to: 
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Fig. 2 shows examples of the implementation of the simplest (H = 0.50) and self-similar flow 
(H = 0.75). 
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Fig. 2. The simplest (a) and self-similar (b) flows 
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A deterministic stream is a regular stream with 
a given packet rate. Figure 3 shows the implementa-
tion of aggregated traffic (H2H + M2M) with a 
Hurst coefficient value H = 0.8. 

The Hurst coefficient is estimated by the 
method of analysis of variance changes [16] based 
on formulas (6). The graphs of the dependences of 
the variance of the incoming and outgoing flows on 
the flow aggregation interval are shown in Fig. 4. 

This example is given for a relatively high traf-
fic volume (0.9 Earl). As will be shown below, the 
value of the Hurst coefficient of the served flow 
depends on the load intensity, at a high value of 
which the properties of the output flow are deter-
mined by the properties of the service process. 
When constructing the model, it is assumed that the service time should reflect the time of packet 
transmission over the communication line [17]. The transmission time of a packet is determined by the 
packet size and the line rate. If the latter is constant (such an assumption can be made for wired com-
munication lines), then the transmission time is determined only by the size of the packet and the dis-
tribution function is determined by the distribution function of the packet length. Let’s assume that the 
minimum and maximum packet sizes are limited. Based on the analysis of the results of a sufficiently 
large number of measurements, it is concluded that a large proportion of packets in wired communica-
tion networks have either a maximum length or a relatively short length. Packages with intermediate 
lengths make up a significantly smaller percentage. Therefore, to approximate the distribution of the 
packet length for modeling purposes, the beta distribution is chosen [18]: 
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where u, v – form parameters; B(u, v) – beta feature. 
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Fig. 4. Estimation of the Hurst coefficient for incoming (a) and served (b) streams  
(H = 0.80 and H = 0.51, respectively) 

 
According to the above formula (7), we will use the beta distribution of the packet length typical 

for Internet traffic. Different IoT applications can create packets of different lengths, however, in this 
model, we focus on monitoring and dispatching services, the implementation of which currently uses 
packets of equal length (required to represent telemetry data). In this model, we assume that the length 
of the IoT packets is constant (“short” packets). 
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Fig. 3. Implementation  

of aggregated traffic (H = 0.7) 
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6. Analysis of simulation results 
As a result of simulation, empirical dependences of the probability of packet loss on traffic inten-

sity were obtained, differentiated for IoT traffic and background traffic. These dependencies are shown 
in Fig. 5 for different buffer sizes. The red dashed line 1 indicates the Deterministic Flow for approx-
imating the probability of packet loss and delivery delay using the diffusion approximation method 
using formula (3). The blue dashed line 2 indicates the Self-Similar Flow for approximate estimation 
of packet loss probability and delivery delay using the same method. 
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Fig. 5. Dependence of the probability of losses on the load intensity  
for different buffer lengths (a) n = 2 and (b) n = 10, ρ ≠ 1 

These figures also show the dependences obtained according to the approximate formula (3). The 
simulation results showed that the estimate using formula (3) gives a slightly overestimated value of 
the loss factor, and the largest error (about 2 times) occurs for a self-similar flow at average values of 
the load intensity. It can also be seen from the graphs above that the loss factor for regular flow (IV) 
claims is much less than the loss factor for self-similar flow claims in aggregated traffic. 
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Fig. 6. Dependence of the packet delivery delay on the load intensity  
for different buffer lengths (a) n = 2 and (b) n = 10, ρ ≠ 1 

Fig. 6 shows the empirical dependences of the packet delivery delay for self-similar and regular 
flows in aggregated traffic on the load intensity for different buffer sizes (n = 2 and n = 10, respective-
ly). These dependences were obtained from the results of simulation modeling. For comparison, these 
figures show the estimates obtained using the approximate model (dashed line). As can be seen from 
the above simulation results, the average delay of packet delivery for a self-similar flow is slightly 
higher than delivery delay of the regular flow packet. The difference in values does not exceed 20 %. 
The analytical model for the aggregated flow rather accurately describes the packet delivery delay in 
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the range of load intensity values, in which packet losses are close to zero (up to 0.5 Erl with a buffer 
length n = 2 and 0.8 Erl with n = 10), and its values are closest to the delay values for a self-similar 
flow. Thus, regular flow (IoT) claims are served with a higher quality, and this is mostly evident in an 
increase in the loss rate for shared traffic. When studying the properties of traffic at the output of the 
service system, the dependence of the Hurst coefficient [19] on the load intensity was investigated. 

Table 1 shows the results of simulation modeling of the QS (queuing system) of the form 
G/M/1/k, the input of which receives an aggregated flow obtained by combining self-similar and regu-
lar flows. The value of the Hurst coefficient of the input stream 0.77inH = . 

Table 1 

Values of the Hurst coefficient of the served flow to the system outputs on the intensity of the flow load G/M/1/k 

Load intensity, Erl Hurst index values  
Self-similar flow Deterministic flow 

0.5 0.75 0.71 
0.6 0.725 0.73 
0.7 0.71 0.722 
0.8 0.68 0.667 
0.9 0.66 0.651 
1.0 0.649 0.625 
1.1 0.625 0.63 
1.2 0.6 0.625 
1.3 0.58 0.65 
1.4 0.56 0.552 
1.5 0.549 0.525 
1.6 0.525 0.551 
1.7 0.519 0.47 
1.8 0.49 0.46 
1.9 0.472 0.472 
2.0 0.465 0.465 

 
With an increase in the load intensity at the QS input, a decrease in the Hurst coefficient of the 

serviced flow at the QS output is observed. At low and medium values of the load intensity at the input 
from 0 to 0.5 Erl, the Hurst coefficient of the output flow is practically equal to the analogous parame-
ter of the input flow. The obtained dependence can be explained by the fact that for high values of the 
load intensity, the properties of the serviced flow are determined largely by the distribution law of the 
service time than by the properties of the input flow, which coincides with the results of the study [20]. 
At a high load intensity, the distribution of the duration of the time intervals between packet arrivals 
tends to the distribution of the service time, i.e. to the beta distribution, which is ultimate. 

Consequently, the time intervals between packets take on a limited range of values, while a self-
similar stream is characterized by a distribution having a “long tail” (for example, a Pareto distribu-
tion). Thus, for the chosen service time model, an increase in the load intensity leads to a decrease in 
the self-similarity properties of the served traffic. 

7. Conclusions 
1. The simulation results showed that when servicing an aggregated stream, the parameters of the 

quality of service of IoT traffic and background traffic differ significantly. Analysis of the results of 
modeling the process of servicing the aggregated stream showed that the probability of packet loss of 
the regular stream is less than that of the random stream (H2H + TI). Moreover, this difference in-
creases with an increase in the intensity of the incoming load.  

2. Analysis of the dependence of the self-similarity properties of the serviced flow on the load in-
tensity showed that the properties of the output flow are close to the properties of the input flow at 
small and medium values of the input load intensity. At large values of the load intensity, the proper-
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ties of the served flow are determined by the distribution of the service time. The results obtained 
demonstrate the range of applicability of known approximate models for systems G/G/1/k and G/G/1 
for describing the loss rate and packet delivery delay. 

Література 

1. Шелухин А.М., Тенякшев А.В., Осин А.В. Фрактальные процессы в телекоммуникациях / за ред. 
А.М. Шелухин, Москва : Радиотехника, 2003. 479 с. 

2. Парамонов А.І. Управління трафіком машина-машина на основі розкладу. Системи управління 
та інформаційні технології. 2014. Т. 56, № 2. С. 84–88. 

3. Кучерявий А.Е., Нуріллоев І.М., Парамонов А.І., Прокоп'єв А.В. Забезпечення зв’язності бездро-
тових сенсорних вузлів гетерогенної мережі. Інформаційні технології та телекомунікації. 2015. 
Т. 3. № 1, С. 115–122. 

4. Impact of machine-type communications on energy and de-lay performance of random access channel 
in LTE-advanced / M. Gerasimenko, V. Petrov, O. Galinina, S. Andreev, Y. Koucheryavy. European 
Transactions on Telecommunications. 2013. Vol. 24, Issue 4. P. 366–377. 

5. Киричок Р.В., Парамонов А.І., Прокоп’єв А.В., Кучерявий А.Е. Еволюція досліджень в області 
бездротових сенсорних мереж. Інформаційні технології та телекомунікації. 2014. № 4 (8). 
С. 29–41. 

6. Боронін П.Н., Кучерявий А.Е. Інтернет речей як нова концепція розвитку мереж зв’язку. Інфор-
маційні технології та телекомунікації. 2014. № 3 (7). С. 7–30. 

7. Бузюков Л.Б., Окунева Д.В., Парамонов А.І. Аналіз часових параметрів обслуговування трафіку 
бездротової самоорганізовуючої мережі. T-Comm: Телекомунікації та транспорт.  2016. Т. 10, 
№ 10. С. 66 –75. 

8. Дао Ч.Н., Парамонов А.І. Моделі концентрації трафіку М2М і оцінка його впливу на QOS в ме-
режах 5G. Електрозв’язок. 2018. № 4. С. 47–54. 

9. Євглевська Н.В., Парамонов А.І., Смирнов П.І., Шамілова Р.В. Модель архітектури програмно-
конфігурованої мережі і когнітивний метод управління для організації множинного доступу в 
мережах інтернету речей. Радіопромисловість. 2018. № 4. С. 68–75. 

10. Зелигер Н.Б., Чугреев О.С., Яновский Г.Г. Проектирование сетей и систем передачи дискретных 
сообщений. Москва : Радио и связь, 1984. 177 с. 

11. Карпов Ю. Имитационное моделирование систем. СПб. : БЖД Петербург, 2005. 389 с. 
12. Кендалл М., Стюарт А. Многомерный статистический анализ и временные ряды. Москва : Нау-

ка, 1976. 736 с. 
13. Мутханна А.С., Виборнова А.І., Парамонов А.І. Дослідження перевантажень у проникаючих се-

нсорних мережах. Електрозв’язок. 2016. № 1. С. 53–59. 
14. Парамонов А.І. Моделі потоків трафіку для мереж М2М. Електрозв’язок. 2014. № 4. С. 11–16. 
15. Вадзинский Р.Н. Справочник по вероятностным распределениям. СПб. : Наука, 2001. 295 с. 
16. Кокс Д., Льюис П. Статистический анализ последовательностей событий / Пер. с англ. под ред. 

Н.П. Бусленко. Москва : Мир, 1969. 312 с. 
17. Ладыженский Ю.В., Моргайлов Д.Д., Юнис Моатаз. Моделирование самоподобного входного 

трафика сетевых процессоров в системе NS-2. Наукові праці Донецького національного технічно-
го університету. Серія : Інформатика, кібернетика та обчислювальна техніка. 2012. № 16. 
С. 68–74. 

18. Справочник по теории вероятностей и математической статистике / под ред. В.С. Королюк. Нау-
чная мысль, 1978. 582 с. 

19. Фомін В.В. Статистичний аналіз IP і VoIP трафіку. Інфокомунікаційні технології. 2009. № 1, 
Том 7. С. 40–44. 

20. Шелухін О.І. Моделювання інформаційних систем: навчальний посібник для вузів, 2-е вид., Пе-
рераб. і доп. Москва : Гаряча лінія − Телеком, 2014. 536 с. 

References 

1. Shelukhin, A.M., Tenyakshev, A.V., & Osin, A.V. (2003). Fractal processes in telecommunications. 
Moscow: Radiotechnics. 

2. Paramonov, A.I. (2014). Traffic management machine-to-machine based on the schedule. Control sys-
tems and information technologies, 56, 2, 84–88. 

http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=UJRN&P21DBN=UJRN&S21STN=1&S21REF=10&S21FMT=JUU_all&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=IJ=&S21COLORTERMS=1&S21STR=%D0%9669802:%D0%86.%D0%9A.%D0%9E%D0%B1.%D1%82.
http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=UJRN&P21DBN=UJRN&S21STN=1&S21REF=10&S21FMT=JUU_all&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=IJ=&S21COLORTERMS=1&S21STR=%D0%9669802:%D0%86.%D0%9A.%D0%9E%D0%B1.%D1%82.


ISSN 2076-2429 (print) Proceedings of Odessa Polytechnic University, Issue 2(64), 2021 ISSN 2223-3814 (online)   

  
INFORMACION TECHNOLOGY. AUTOMATION 

45 

3. Kucheryavy, A.E., Nurilloev, I.N., Paramonov, A.I., & Prokopiev, A.V. (2015). Ensuring the connectiv-
ity of wireless sensor nodes of a heterogeneous network. Information Technologies and Telecommuni-
cations, 3, 1, 115–122. 

4. Gerasimenko, M., Petrov, V., Galinina, O., Andreev, S., & Koucheryavy Y. ( 2 0 1 3 ) .  Impact of 
machine-type communications on energy and de-lay performance of random access channel in 
LTE-advanced. European Transactions on Telecommunications, 24, 4, 366–377. 

5. Kirichek, R.V., Paramonov, A.I., Prokopiev, A.V., & Kucheryavyy, A.E. (2014). Evolution of research in 
the field of wireless sensor networks. Information technologies and telecommunications, 4 (8), 29–41. 

6. Boronin, P.N., & Kucheryavyy, A.E. (2014). The Internet of Things as a New Concept for the Devel-
opment of Communication Networks. Information technologies and telecommunications, 3 (7), 7–30. 

7. Buzyukov, L.B., Okuneva, D.V., & Paramonov, A.I. (2016). Analysis of the time parameters of servic-
ing the traffic of a wireless self-organizing network. T-Comm: Telecommunications and Transport, 10, 
10, 66–75. 

8. Tao, Ch.N., & Paramonov, A.I. (2018). Models of M2M traffic concentration and assessment of its im-
pact on QOS in 5G networks. Electrosvyaz, 4, 47–54. 

9. Evglevskaya, N.V., Paramonov, A.I., Smirnov, P.I., & Shamilova, R.V. (2018). Model of architecture 
of software-defined network and cognitive control method for organizing multiple access in networks of 
the Internet of things. Radioindustry, 4, 68–75. 

10. Zeliger, N.B., Chugreev, O.S., & Yanovsky, G.G. (1984). Design of networks and systems for the 
transmission of discrete messages. Moscow: Radio and communication. 

11. Karpov, Y. (2005). Simulation of systems. SPb.; BCHV Petersburg. 
12. Kendall, M., & Stewart A. (1976). Multivariate statistical analysis and time series. Moscow: Nauka. 
13. Muthanna, A.S., Vybornova, A.I., & Paramonov, A.I. (2016). Investigation of overloads in pervasive 

sensor networks. Electrosvyaz, 1, 53–59. 
14. Paramonov, A.I. (2014). Traffic flow models for M2M networks. Telecommunications, 4, 11–16. 
15. Vadzinsky, R.N. (2001). Handbook of Probability Distributions. SPb.: Science. 
16. Cox, D., & Lewis, P. (1969). Statistical analysis of sequences of events / Transl. from English ed. N.P. 

Buslenko. Moscow: Mir. 
17. Ladyzhensky, Yu.V., Morgailov, D.D., & Yunis, M. (2012). Modeling of self-similar input traffic of 

network processors in the NS-2 system. Scientific studies DonNTU. Series “Informatics, cybernetics 
and numerical technology”, 16 (204), 68–74. 

18. Handbook of Probability and Mathematical Statistics (1978). Ed. Korolyuk, V.S. Publisher. Naukova 
Dumka. 

19. Fomin, V.V. (2009). Statistical analysis of IP and VoIP traffic. Infocommunication technologies, 1, 7, 
40–44. 

20. Shelukhin, O.I. (2014). Information systems modeling. Textbook for universities. 2nd ed., Revised and 
add. Moscow: Hot line – Telecom. 

 
Прокопович Ігор Валентинович; Ihor Prokopovych, ORCID: https://orcid.org/0000-0002-8059-6507 
Лопаков Олексій Сергійович; Oleksii Lopakov, ORCID: https://orcid.org/0000-0001-6307-8946 
Космачевский Володимир Володимирович; Volodymir Kosmachevskiy, ORCID: https://orcid.org/0000-0002-3234-2297 
Бабич Юлія Ігорівна; Yuliia Babych, ORCID: https://orcid.org/0000-0001-9966-2810 
Швагирев Павел Анатолієвич; Pavel Shvahirev, ORCID: https://orcid.org/0000-0003-3913-4412 
Денисова Ольга Володимирівна; Olga Denysova, ORCID: https://orcid.org/ 0000-0001-5930-8649   
 

Received October 02, 2021 

Accepted December 06, 2021 
 
 

 

https://orcid.org/0000-0002-8059-6507
https://orcid.org/0000-0002-3234-2297
https://orcid.org/0000-0001-9966-2810
https://orcid.org/0000-0003-3913-4412
https://orcid.org/0000-0003-3913-4412

