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Abstract. The problem of constructing fundamental solutions to the thermoelasticity problem
for a piecewise-homogeneous transversely isotropic space is reduced to the matrix Riemann
problem in the space of generalized slow growth functions. As a result of the solution of which,
were obtained expressions in explicit form for the components of the stress tensor and the
displacement vector in plane of connection of transversely isotropic elastic half-spaces containing
concentrated stationary heat sources. The temperature distribution is investigated depending
on the thermophysical characteristics of the half-space materials.

Introduction

The study of stress concentration in the vicinity of interfacial and internal defects such as
cracks or inclusions in thermoelastic fields is of great practical importance. Many works have
been devoted to this problem for various environments. In particular, in [1-4], the problems
of elasticity and thermoelasticity about interfacial stress concentrators such as cracks or rigid
inclusions in piecewise homogeneous isotropic and transversely isotropic spaces are considered,
which are reduced to systems of two-dimensional singular integral equations (SIE) and proposed
a method for their solution.

In the mathematical formulation and solution of such problems about defects, it is necessary
to set the boundary conditions on the defect itself, such as stress on the crack edges or
displacement at the inclusion. Since in thermophysical formulation of the problems from
determining the stress and displacement fields in the vicinity of the stress concentrators, known
the stresses or displacements at the boundary of the region, at some interior points or at infinity
(for unbounded bodies), then the determination of the boundary conditions on the defect is a
separate problem.

Within the framework of the linear theory of thermoelasticity, to solve this problem, it is
necessary to know the distribution of the temperature, stress and displacement fields in the
corresponding piecewise homogeneous bodies without defects in the presence of volumetric forces
and concentrated heat sources.

In particular, for piecewise homogeneous isotropic and transversally isotropic spaces, such
solutions are given, respectively, in [5, 6]. Green’s functions for piecewise homogeneous
transversally isotropic spaces in the presence of a concentrated heat source and in the absence
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of thermal diffusion were constructed in [7-10], and in the presence of thermal diffusion —
n [11]. In [12], the Green’s function was constructed for a continuous transversely isotropic
space with allowance for the orientation of the symmetry axes. For piezo and magnetoelectric
compound transversely isotropic spaces, the Green’s function was constructed in [13—-15]. The
fundamental solution for porous transversely isotropic materials was constructed in [16, 17], and
for functionally graded materials in [18, 19]. In [20-22], Green’s functions for a layered thermal
environment were constructed.

In [23-25], similar problems for composite materials were solved by numerical methods.

In this work, using the approach of works [26-28], the problem of constructing fundamental
solutions for piecewise homogeneous two-dimensional anisotropic media is reduced to the matrix
Riemann problem and obtained its exact solution, which made it possible to construct in an
explicit form a fundamental solution for a piecewise-homogeneous transversely isotropic space
in the presence of concentrated forces and heat sources.

1. Statement of the problem
Let in an inhomogeneous space composed of two different transversally isotopic half-spaces
completely linked in the plane z = 0, at an arbitrary point My (xo, yo,20) concentrated force
P = (P, P2, P3) and at an arbitrary point Mj(z1,y1, 21) stationary heat sources.

The thermoelastic state of space is described by the vector

vV = {Uk(%?/, Z)}k;:l,g - {O-x7o-yaUZaTy27TCC37Txy7u7v)w}' (1)

Based on the equilibrium equations and the generalized Hooke’s law, and also taking into
account the Duhamel-Neumann relation with respect to the components of the vector v, in
the space of generalized functions of slow growth &(R?) we write the following boundary value
problem

D[z,01,02,05)v=F, v,FecJ(R3), (2)
vk(x7y7+0) :vk(xaya _0)7 k:ma k:# 172767 (3)
Uk(xv Y, z)‘(x,y,z)%oo = 07 k= 1779 (4)

Here we use the notation

Dy O
b= H _§ ]53;3 ) FT:F5+F37 Fg:_5(x_xva_$07$_x(])HPIaP27P3701><6H7
0
S O
FZ’ = ||01><37ﬁ1T7 62T7 B3T>01><3||> S = H o) ! §X3 ;
3x3 2
81 0 0 0 (93 82 S11 S12 S13 S44 0 0
Do=| 0 9 0 93 0 01|, Si=1| s21 s11 s13, So=| 0 sa4 0 |,
0 0 (93 82 61 0 S13 S13 S33 0 0 S66
o = %, Dy =2, 03 = 8z7 sk = 0(z )s:] + 0(—2)sy;, sfj — of the generalized Hooke’s law,

respectively, for tﬁﬁe upper z > 0 and lower z < 0 half-spaces; O, is zero matrix of dimension
nxm, B =0(z )ﬂk +0(—2)5 , B,:f is thermal expansion coefficients, T is temperature from a
concentrated heat source with a capacity @) which was received in [13]

ms31 m32 ms33

T ) Y + ’
(z,y,2) = V2 + (&olz — 1)) \/7"1 + (o2 + 21))? \/7“% + (boz + 021)?
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where
ma1 = 0(2, 20)mg; + 0(—2, —20)mzy, ma2 = 0(—2, —z0)mz, — 0(2, 20)my,

mss = 0(z, —zo)mgf3 — 0(—2z, z0)ms3,

+ )\1i + +y+ mEF + +y+, + mét +
mpy = 5,3 = A (>\3 m1jF + — ), mip = A ()‘3 my £ ), my =1,
0 0 0
AT ATAS 1
+ 113+ + 4+ + 13 + +
My = —x-my £Agmy, moy = —_F mfj:)\gm;, m31 = TF.£
&0 o A3 &0
+ ¥
+ + + M + + m + + /v +
m32:)\3m1i€§, m33:)\3mf+—§2, & =AM /A3
0 0
o = 0(z,20)68 + 0(z, —20)&5 +0(—2,—20)&y +0(—2,20)&, &0 = 0(2,20)& +0(—2,—20)&;

50 = 9(2’ ZO)&; - 0(2, *20)507 + 9(727 720)63 - 9(72’ ZO)&(J]r? Q = 9(27 Zl)Q+ + 9(*27 *Zl)Q_y

Ai = )\;_9(113) + A 0(—z3), i = 1,3, )\2IE is thermal conductivity coefficient for the upper z > 0
and lower z < 0 half-spaces, 11 = \/(z — 21)2 + (y — 1)

2. Construction of the fundamental solution problem of thermoelasticity
We apply to the matrix equation (2) the operator of the three-dimensional Fourier transform

F3 from $/(R3), given the following representation for vector components v: v, = 6(z)v; +

0(—z)vr, = v} + v, , where v,f € §'(RY), RY = R? x Ry. Then, considering the conditions

(3), (4) and the results of [8-14], with respect to V= (a1, az, a3) = F3[vf] € §'(R?), and also
that the functions Vk,i € §'(R3) admit an analytical representation [8, 10] in the variable a3 we
obtain the following matrix equation:

M.V*E =F* W F*c ' (R?). (5)
Here we use the notation

. . . 1
M. = D[:l:07 —10, —10, —1043], F;t - {f];t}k:ma f];t - e(:)tpk + 5Xk7 k=1,2,3,

1 1 1
f]j: = B]:gthTi(afi) + §Xk7 k= 47 57 67 f];t = :F§Xk‘> k= 77 8> fgi = :F§Xk7
X = {Xk‘}k:ﬂ € %,(Rg)’ Xk = 07 k= 47 57 97 e(:)t = H(iZO) exp(ialxo + iOé2l/0 + ia320)7
iagz 1 (—zag))\j:mjE —rmE
T*(a3) =e £0(+2 [ - - 31 2
(as) = eo {Q (1) a3A] + Afr? 7 a3Ay + AT

(—iag))\gtmf —rmj
Q2T+ 22
343 1

)643537”21

—0 F 21)Q7(

)eifo_"'zl} , ey = eXp('L'Oélxl + i()Zle),

Xk(a1,az) are unknown functions from 3/(R?) for determine which, we need to use conditions
(3) after the Fourier-transformed.

We represent the sought functions as
(—ic) U — (—ia) T3, (6)
(—ic) YT — (—ia2) Y3, (7)

VE = —(—ion) Ui — (—ion)VE, Vg
Vit = —(—iag) YT — (—ien)Y5, Vi

where \Iff, T2i, k = 1,2 are new unknown functions. Then matrix equation (5) can be separated
into two independent equations

L.Uy =Ff, G.Uj =Fj, (8)



TPCM-2021 IOP Publishing
Journal of Physics: Conference Series 2231 (2022) 012016 doi:10.1088/1742-6596/2231/1/012016

where

1,+ 2,+
Ul = Uy hm = {175, V151 Uy = Uy hmia = {V35, 15, 95, V',

Fi = {(—iao) fi — (—ion) f5, (—iao) f3£ — (—ioa) i},
Fy = {f5, (—ian) fi" + (i) fy, (—iaw) f5 + (—ian) £, f5 ),

+
_ £ R + 2 + _ %3 +
Gt = {gkj}k,jzl,---,ﬂn 911 =91 = (—i0a3), g2 =7" gn = ot =+ Y12
33
_+ +2
+ _ G313 4 + 2 + 4 _ -
9oz = — + T, g g3z = (-Z()ég)?" 3 gk] - g]k - 07 k= 1727 J= 3>47
C33
+
1 1 c
+ + + o+ + + 13+ 2 _ 2 2
932 = T Y9120 Y= Y120 9u =" Y3= T %y T =0]taj
044 C33 C33
2
_ g+ + _ . -2 + _ . 2 +_ T + _ 4
Li= {lkj}k7j=1727 Iy = (—iag)r™=, I = (—iaz)rs, Iy = ey l51 = —ce67s
44

Directly from equations (8) we obtain U = L;lFf, U;t = G;lFf, where L3! = {ZZ’]#E}M:LQ,
Gi'= {gz;i}i7j:17.,.74. Further, using representations (6), (7) after applying the inverse Fourier
transform, we obtain such representations for o, 7., 7y.:

0 2 3
Win a1 nm
B Y Y = ry =R D) DR L
i+ §n\z — z1) \/r% + (&nz +&21)?2 n=1m=1 \/r% + (€nz + Em=1)?
2 2 % 2 2
R12n Blnm
+ Pj; + —
; ’ nzl + (énlz — 20])2]3/2 n,;l [r + (Enz + Emz0)?]3/2
2 % 2 21 21
‘Z_ZOIRlln Zﬁlnm—i_z(]ﬁlnm
- B3 Z 2 ”23/2_2 5 (f 3 77232 ’ (9)
2T+ Galz— )PP 2 [+ (Eae + B0
oy = 01 23: RQ n[To (Enlz — ZOD i 1/2 > wz,n[T(Q) + (gnZ + 5020)2]_1/2
A5 Gl — 2ol T+ Gale = 20D S8 o] 4 doleol + /12 + (B + 020)?
2

a2,n,m[T[2) + (Enz + EmZ0)2]71/2
n=1m=1 &n|2| + Em|20| + \/7’8 + (Enz + Emz0)?

(=118 [rd + (& 12 — 20])% 7 1/2 N (—1)7 1By [r3 + (€02 + E020)%] /2

2
+3 P 0a0;

j=1 &z — 2ol + /12 + (& 12— 20))2 €0z + Eozo + /72 + (€02 + E020)2
0192, Z —R3, n[T(Q) + (énlz — 20))2]1/2 ﬁg’n’m[rg + (Enz + Emzo)?]1/2
i |J2 = 0l6d + VT Gl =D ol + 1+ (B + Eno?
- Ry 2 o
— Y ; + (&) — 20])2]3/2 +n%;1 2t G+ Eeo) P [ (10)
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B B . P Rl N N R AV
yz —
nt Snlz =20l + Vi Cnlz = 2007 8]+ Eolzol 4+ /2 + Bz + €020)2

~1/2

_i i - O‘2nm[7ﬂo (gnzjngO) ] :
n=1m=1 &|z| + Em|20| + \/7"0 + (&nz + &m20)?

2 11 2 1. o \21-1/2 V-1 A. 2 4 (8 g \21-1/2
o3 (o, | CLP S0l 61z = 217 | 7l oz oz
= &le — 20l + i3+ (& 12— 20 oz + Eozo+ /1 + (Eoz + €020
2 _ 1/2 1/2
—R5,5 |7 nlz — 2 B2 nmlT nz +Enz
cosny 3o | T2l (@l = DT Bl Gt )
ot |12 = 20068+ VG + Gl = 2007 £ 2 4 ol + /13 + Gz + Enzo)?
: R3, : ;
+ 9 2t + AR de e , 11
N ;[r§+(€nlz—20\)2]3/2 n,;l [r3 + (€nz + &mz0)2]3/2 .

where

*,74 *,74 . —
Q;t(a3ar) = ng (a3ar)ﬁyj:[tr2 + gj4 (ag,T)")/;:7 .] = ]-747

po _ GHCIEE DI g ) pos  arigh et e D)
1n — +h+ ) 1n — +h+ )
n n n n
™ (as,r) = (—iag)\dmi —rm3, 7 (a3, ) = (—iaz) A3 mi —rm3,

qy (i, )T (i€, , 1)

7 (a3, 7) = (—iozg))\;'ml_ —rms;, Bl_: = S ,
’ &n hn
3+— _ Qi'_(_lg;i_, 1)T+_(_i 7—1_7 1) Ié++ o q;_(_zfr—l_7 1)T++(_i§n7 1) 14
Ln = +p,+ v Pin T T I =40%
n n n n
3
hTiL = H (5%)2 - (fli)Qa 7'77(043,7’) = (—iag))\gml_ —Trmy,
I=1,l#n

L . 3 3
=gy (1, )T (i, , 1) + . 4 + 3+
Pin = . & hn — Rjk ZRJkn’ Bj :Zﬂyn’ ﬁij:Z:ﬂjnjzF
nn n=1 n=1
— * NI — +
Ag' = {akj}k =1 Ao= {ak,j}k,j:m = N+ +N7, N*={R}}, 14

4 4 4

- _ * p0,— + _ * o+ - _ * g—

Z%kRkn’ WV = DGRy 1 =D anB, wy =) by,
k=1 k=1

k=1
_ 2—j _ 2—j
+ 4t —+ — — +— (¥ — o) (z — o)
. = . —'— . R . = . . s ’[_9 =, 1_9 = —
Bi =B5; B; By =B +5; 1j (z — mg) 1 2j (y — yo) =7
*,+ *,+
jnm ZRjkn km’ ]nm ZRJk‘n km’
jnm ZRjkTL km’ Jnm ZR]kn km’
4 4
++ _ 4+ - _ *,+ _ +- _ _
=D RN e = D Ry =12 =0, =3,
k=1 k=1
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- *,— - _+ —_ *,— + —_ - _+ —_ —_

im =D Bty =D Ruf, n=12 oo =pn=0, n=3,

k=1 k=1

~++ _ pEt ++ ~+F _ ok +
in = Bin ~Hin> Win =B~ i

Ry =0 RO+ RVF, RY =9 Ry +0 RY
jn = 0z = 20) Ry, + (ZO_Z) jin o B =0z = 20) Ry, +60(20 — 2) Ry,

3. Stress fields in the plane of connection of half-spaces

Putting z = 0 in the obtained expressions (9)-(11), we obtain the distribution of normal and
tangential stresses in the plane of connection of half-spaces in the presence of a stationary source
of heat of the average force:

w1 aln

+ . on
Z \/TO gnZO \/TO 5020 n=1 7“(2) + (5n20)2

2
Y9520 At nzo
P; Bn : — P ’ ,
B B B

Z R, [r7 + (€n21)]” 1/2 B walr} + (£120)2) 712
oz T+ (Enz1)? Eolzol + /1T + (E021)?
&l @zn “2} f; { D1;(~1)1 81 [r3 + (£20)7 /2
= [énlza| + + (én21)? &lzol + /18 + (€20)?
ﬁngQ,n[rg + (620 L e Azn(e — 20)
o1 Enlzol + /g + (n20)? th) + (€n20)23/%

91z Z R ,[r§ + (€nz0)*] /2 _ walrg+ (020)%] 71/
n1 Enlzol + v 75 + (§n20)? 50\z0| +4/73 + (5030)2

3 2 3 21-1/2 1.2 21—1/2
. WM%+@MM]/ P{ 5 V(L Ird + (€20)7) 71250
2 4 Z E|zo| + /15 + (€20)?

-1/2 2
s 192]B2 n[TO + (5 ZO) ] }+P3Z A2n y yO)

1 Galzol + Vgt (€n20)? + (€n20)?]3/2

Ta:z(may) = 1911 {

Jj=1

+01

Tyz ($7 y) =

where

Sp = O(ZO)S;'1 + 0(—ZO)S_, Apn = H(zo)A;n +60(—z0)A, p=1,2,

p?n’
Bpn = e(zo)B;n + 0(—= )Bp‘n, Af,=-Rf+ B++, A, =B,
++ ++ 54 et ¥
B Zﬂmm BEF Zﬂmn, Brin = Zﬁimvn, BEF = Zﬂgmm,
Azn: R/;ln+ﬂlkn’ Al;,n:_ il;n’ k:273747

+ + - +— _
Bk,n - Rk2n+ﬁ2knv Bkm - 7ﬁ2,k,n’ k= 1,...,4.

4. Discussion and numerical results
Numerical studies of the stress distribution were carried out depending on the thermophysical
properties and the presence at the points M7 (1, —1, 1) and My(—1,1, —1) stationary concentrated
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Figure 1. Normal stress distribution for material combination m1-m2.

heat sources with a capacity Q1 = 2 x 10*J and Qo = 10*J. Figures 1 and 2 show
the distribution of normal stresses ., in plane 20y for some combinations of transversely
isotropic materials. Calculations were performed for the combination of materials: cadmium
(material m1), magnesium (material m2).

Table 1 shows the values of thermoelastic constants of these materials and table 2 shows the
attitudes of thermoelastic constants.

Table 1. Material properties of transversely isotropic materials.
cij x 101, N /m? o x 1075, (°C)~Y| A;, W/m-°C
Material C11 C12 C13 C33 Cy4 C55 a1 = Q9 Qs )\1 = )\2 )\3
ml 1.08 | 0.389 | 0.375 | 0.46 0.156 | 0.156 54 20.2 93 94
m2 0.5952 | 0.256 | 0.214 | 0.6147 | 0.1647 | 0.1647 27.7 20.2 159 160

Table 2. Attitudes of thermoelastic constants.

Material 3 L o
combination Gij = Cz—';/cij af [oq AT/AL | A3 /A5

ml-m2 | 1.814 | 1.519 | 1.752 | 0.748 | 0.947 | 0.947 | 1.949 1 0.596 | 0.587
m2-ml | 0.551 | 0.658 | 0.571 | 1.336 | 1.055 | 1.055 | 0.513 1 1.677 | 1.702

ay ag

In figures 1a and 2b show the distribution of normal stresses when the power of the heat
source in the upper half-space is greater than in the lowerand in figures la and 2b vice versa.
As can be seen from the above figures, the ratio of the values of the thermoelastic constants of
half-spaces has a significant effect on the distribution of stresses near the inclusion, in particular,
the value of the coefficient (33 = A;)Fg /Ass, and attitudes of the thermal conductivity coefficients
)\:}f /A3 which characterizes the difference between the elastic and thermal properties of half-
spaces in the direction of the axis z. This results in both a qualitative and quantitative change
in the distribution of the normal stresses, as evidenced, for example, by comparing the graphs
of figures.
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Figure 2. Normal stress distribution for material combination m2-m1.

Conclusion

Built fundamental solution of the thermoelasticity problem for a piecewise-homogeneous
transversely isotropic space is constructed in an explicit form, which made it possible to study
how temperature affects the stress distribution in the plane of joining materials. In particular, it
is shown that the inhomogeneity of the thermoelastic characteristics of the medium significantly
affects the stress distribution in space.
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