Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology
2022; Vol. 5 No.3: 228-239

DOI: https://doi.org/10.15276/aait.05.2022.16
UDC 004.383

Image buffering in application specific processors

Anatoliy M. Sergiyenko?

ORCID: http://orcid.org/0000-0001-5965-1789; asergy@bigmir.net. Scopus Author ID: 27868137900
Vitaliy O. Romankevich?

ORCID: http://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058
Pavlo A. Serhiienko?

ORCID: http://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516
1 National Technical University of Ukraine “Igor Sikorsky KP1”. 37, Peremohy Ave. Kyiv, 03056, Ukraine

ABSTRACT

In many digital image-processing applications, which are implemented in field programmable gate arrays, the currently
processed image's frames are stored in external dynamic memory. The performance of such an application depends on the dynamic
memory speed and the necessary requests quantity during algorithm’s runtime. This performance is being optimized through field
programmable gate arrays - implemented buffer memory usage. But there is no common method for the formal buffer memory
synthesis with preset throughput, input and output data sequence order and minimized hardware costs. In this article, the features of
image input and processing based on Field Programmable Gate Array are considered. The methods of building buffer circuits in field
programmable gate arrays, due to which the intensity of data exchanges with external memory is reduced, are analyzed. The method
of synthesizing pipeline circuits with specified performance characteristics and the data sequence order is given, which is based on
the mapping of the spatial synchronous data flows into the structure implemented in the field programmable gate arrays. A method of
designing buffer schemes is proposed, which is based on the mapping of spatial synchronous data flows into local memory in the
form of chains of pipeline registers. The method helps to organize the data flow of at the input of built-in pipeline units of image
processing, in which the data follow in a given order, and to minimize the amount of buffer memory. The method ensures the use of
dynamically adjustable register delays built into the field programmable gate arrays, which increases the efficiency of buffering. This
method was tested during the development of an intelligent video camera. The embedded hardware implements a video image
compression algorithm with a wide dynamic range according to the Retinex algorithm. The same time it selects characteristic points
in the image for the further pattern recognition. At the same time, multiple decimation of the frame is performed. Due to the multirate
buffering of the image in the field programmable gate arrays, it was possible to avoid using of external dynamic memory.

Keywords: Field programmable gate array; spatial synchronous data flows; image processing; buffer memory

Copyright © Odessa Polytechnic National University, 2022. All rights reserved

For citation: Sergiyenko A. M., Romankevich V. O., Serhiienko P. A. Image buffering in application specific processors.
Applied Aspects of Information Technology. 2022; Vol.5 No.3: 228-239. DOI: https://doi.org/10.15276/aait.05.2022.16

INTRODUCTION perform the image collection, processing and
Advances in FPGA (Field Programmable Gate intelligent cameras [4]. They have embedded FPGAs

Array) technology have made them a platform for '_[elecorr_lmunications [5]. _Since securit;_/ de”“?‘”ds are
implementing various computer vision algorithms ~ Icreasing, the processing complexity will only
[1], [2. The majority of the algorithms are increase. Also the real time image processing
impossible to be operated in real time on the algorithms, such as those used in high-speed vehicle

general-purpose  processors and the graphics control [6] require the hardware with high
accelerators application is too expensive for it. bandwidth and low latency. That demands are also

Therefore, these algorithms are best suited for Satisfied with the use of FPGA. Therefore, a deep

hardware implementation [3]. For example, there is ~ neural network, applied in FPGA, is able of data
a significant volume increase of security cameras-  Video stream processing with latency of 31,85ms [7].

generated data happened. In many systems with a The last generation FPGAs represent an
limited communication throughput exists a need in  attractive  alternative  for image  processing
remoted image processing in  which acceleration, as FPGAs contain ARM processors and
programmable logic for computationally intensive
© Sergiyenko A., Romankevich V., operations acceleration. However, transferred twice

Serhiienko P., 2022

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0)

228 Software engineering and systems analysis ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)


http://aait.ccs.od.ua/index.php/journal/theme3
mailto:paulsrgnk002@gmail.com

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

2022; Vol. 5 No.3: 228-239

FPGA have no more than ten MB of built-in
memory. Because of these limited capabilities of on-
board memory, the external DDR-RAM is used for
image frames [8]. This leads to high memory
accessing intensively, which has potentially high
latency, and, as a result, to performance
deterioration or high hardware costs due to the
access paralleling to multiple memory chips and the
power consumption increase, because DDR is highly
energy consuming. This prevents the FPGA
application, especially in large frames processing
with algorithms, which have intensive
communication with memory.

As shown in the above examples, for image
processing tasks it is common to process video
streams at high clock rates and preferably with
minimized latency. For this purpose, on the one
hand, in FPGA should be used pipeline equipment
that is able to work with the input flows of image
pixels, and on the other hand, the buffering of
intermediate images cannot be excessive. Such a
hardware architecture can start image processing in
the very moment when the required pixels set is
accumulated and keep processing in a pipelined
manner, providing both high throughput and low
latency.

In this article examines the organization of
memory access during pipeline image processing in
order to minimize the use of external FPGA
resources, which is a prerequisite for minimizing the
latent delay. The approach to the buffer memory
organization in FPGA is proposed, which ensures
the data flows in the required order between
hardware functional units that are configured in
FPGA. This approach, of course, does not exclude
the external memory access, but it is applicable to
any kind of internal memory in FPGA.

LITERATURE REVIEW

Image processing algorithms, as usual, consist
of several sequentially performed functions. Each of
these functions reads the required pixels quantity
from the image frame's memory unit, processes them
and records the result pixel into another area of this
memory or the other memory block. Since the image
frame occupies relatively large volume, the
hierarchical memory is used in image processing
systems on FPGA. The bottom level of this memory
consists of pipeline registers, middle level — buffer
memory blocks sized of a few kilobytes and the
external memory (DRAM) forms the top level.

The internal FPGA memory has low access
latency, but its capacity is relatively low. In contrast,
the external memory has higher capacity, but higher

latency and lower throughput. In addition, accessing
DRAM consumes significantly more power than
accessing FPGA memory.

Thus in the field of image processing FPGA
architecture it is essential topic — finding — the
balance between built-in  buffer and system
performance.

For flow architecture, it is accepted that the
FPGA receives image pixels, row by row, in the
order as they are captured by image sensor. On-chip
buffers in FPGA are used to store multiple frame
lines to access a specific window or aperture, which
is being processed. Yet the most widely used and
comprehensible  paradigm remains that the
processing algorithm reads data from any place in
the frame, processes it and writes the results back to
the frames memory. For this purpose, a high
throughput external memory is required and also
buffer memory blocks with a volume-optimized
design.

The simplest approach to increase memory
throughput — is to have a few parallel memory
blocks. Similarly, it is possible to implement a
memory with an extra-large data word length that
stores several adjacent pixels. But in these cases,
besides of several external memory chips, it is
necessary to have many separate FPGA pins for
addresses and data output, which is often
unacceptable.

This problem can be solved by organizing
several cache memory blocks in the FPGA. By
dividing the address space into multiple banks, for
example using one memory bank for odd addresses
and one for even addresses, adjacent addresses can
be accessed simultaneously. For instance, four banks
can be used to access four pixels in the area 2X2.
Furthermore, to effectively access pixels in aperture
the address may be encoded in the manner that is
proposed in [9].

In pipelined random access data processing, one
process can write results to one memory bank, and
another can read data from the second bank. When
the processing of the next frame is completed, the
banks switch roles. At the same time, a third
memory bank is used for better synchronization
[10]. Still, such switching of banks adds one
excessive period to the latency of the algorithm and
has the consequence of increasing the hardware
costs of the system and the use of more FPGA
contacts.

A more practical approach is running the
memory at a higher clock frequency than the rest of
the system. Double Data Rate (DDR) memory is one
example of memory that allows data to be per clock.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis 229


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology
2022; Vol. 5 No.3: 228-239

Normally modern high-capacity FPGAs has
dedicated pins and a built-in access controller for
external dynamic DDR memory of the latest
generations [11]. At the same time, the project
simulates multiport memory due to access time slots.
In addition, blocks of buffer memory are required
for writing and reading, since dynamic memory has
high throughput only when transferring data rows
from neighboring cells. Unfortunately, in many
projects, DDR memory is also crucial for supporting
the operating system of the processor embedded in
the FPGA, and therefore the bandwidth of this
memory drops during processing images.

If the data follows sequentially, then it is worth
using buffers of type first in — first out (FIFO) type,
the cells which store blocks of data, and the pixels at
the output are selected at the local address [12]. One
common form of intermediate data storage is row
buffering. Consider the calculation of a function
from nine pixel values in the aperture. According to
the algorithm, nine pixels have to be read from the
frame memory for each aperture position in each
clock interval, and each pixel have to be read nine
times as the aperture scans the image. Pixels that are
next to each other horizontally are required in
consecutive system clocks, so can be buffered and
held in registers. This reduces the number of
readings to three pixels per clock. The row buffer
stores the pixel values of previous rows to avoid re-
reading the pixel values (Fig. 1).

Each line buffer actually delays pixel input by
one line. An obvious implementation of such a
digital delay is the use of an N-stage shift register,
where N is the width of the image. The RAM block
(BlockRAM) in the FPGA can be configured as a
FIFO buffer according to the circular buffer scheme.
In addition, several parallel line buffers can be
implemented as one buffer, but with a larger data bit
rate [13].

Buffers of different lengths should be designed
for different image sizes. In work [14], it is proposed

to use a universal buffer that can be adjusted to the
size of the frame and aperture with the possibility of
dynamic reconfiguration. A similar buffer is
described in [15], which is additionally capable of
transposing the position of pixels in the window, as
well as performing image correction at its edges.

Works [16, 17] presented general methods of
designing a flow structure for image processing with
an aperture as in the example in Fig. 1. At the same
time, the functions that are sequentially performed in
the algorithm are displayed in the corresponding
processing blocks, which are separated from each
other by buffer blocks that store several adjacent
lines. The interconnections between processing
blocks and buffer blocks are buses that correspond
to the arcs of the data flow graph (DFG) of the
algorithm.

It should be noted that such a scheme executes
the algorithm specified on the network of Kahn
processes [18]. In such a model, the algorithm is
divided into several functions, data between which is
transferred through data flows implemented as
FIFO. Due to this, the intermediate data is reused
many times without referring to the external
memory. This organization of calculations is also
recommended when programming graphic functions
of the OpenCL library in FPGAs [19]. Yet it is
worth noting that the network of Kahn processes is
not protected from blocking.

Therefore, the problems are the following:

1. Optimization of data exchange between
FPGA computing resources and external memory by
improving the design of the corresponding buffer
memory.

2. The designed buffer memory blocks should
have a balance between cost and efficiency,
optimized in size according to the size of the image
being processed.

3. Such memory blocks must be made in the
form of a cyclic FIFO buffer.

Window
|—> Row buffer2 R > R R
|—> Row bufferl » R > o P o A
Input
P - > R » R » R
v VY vV VY Yy VY Output
Filter function —>

Fig.1. A typical image frame processing scheme
Source: compiled by the authors

230

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

2022; Vol. 5 No.3: 228-239

THE PURPOSE OF THE ARTICLE

When processing images, the best strategy is to
perform data calculations that are stored as much as
possible in buffer memory blocks inside the FPGA.
At the same time, processing is carried out in
pipelined processing blocks, and buffer memory
blocks are FIFO buffers. But the question of how
best to organize data input and transfer of
intermediate results between pipeline processing
units remains open. In addition, the task of
organizing calculations when the period of data
tracking does not coincide with the period of the
clock signal, although it is a multiple of it, has not
been solved. FPGAs manufactured by Xilinx have
the ability to organize FIFO buffers on the basis of
logical tables (look-up tables), which have dynamic
depth reconfiguration. These are SRL16 elements.
But there is no method how they can be effectively
applied for image processing. These questions are
answered in the next section.

Therefore, the aim of the research is the
following:

To propose a method for designing built-in
buffer memory blocks for FPGAs, suitable for
working with pipeline processing blocks, including
clock-asynchronous calculations.

MATERIALS AND RESEARCH METHODS

The used methods

In the study of data buffering algorithms and
their mapping to hardware, the method of mapping
of the spatial synchronous data flows (SDF) was
used [1]. The method considers periodic algorithms
in which the data for processing follows with a
period of P clocks, which also includes image-
processing algorithms. Such an algorithm is
presented as a spatial SDF in space with coordinates
of the type of operation, the place of its execution,
and the moment of its execution. The graph of the
resulting calculator, which executes the algorithm in
the pipeline mode with a period of P clocks, is
obtained by mapping the spatial SPD into the
subspace of structures, and the schedule of execution
of operators into the time subspace.

Experimentation and prototyping

The resulting conveyor device was described in
the VHDL language directly according to the spatial
SDF. The device was modeled to check the
correctness of the algorithm execution in the VHDL
simulator. For the final test of the device's
functionality, its description was compiled in the
Lattice FPGA CAD and the resulting firmware was
loaded into the ECP3-70 FPGA, which is located on

the Lattice HDR-60 board, which is equipped with a
video sensor.

METHODS OF SYNTHESIS OF BUFFER
SCHEMES BASED ON SPATIAL SPD FOR
DATA FLOW PROCESSING

The method of synthesis of pipeline schemes
for data flow processing

The general approach to the development of a
functional scheme at the level of register transfers is
as follows: a set of resources (adders, multiplication
blocks, registers, etc.) is selected, a schedule of
algorithm operations is drawn up, and operations are
assigned to resources. For this, they find a set of
necessary registers and a resource-switching
network. This approach is also used to design a
circuit with FIFO buffers. At the same time, the
chains of registers built in the scheme are replaced
by appropriate FIFOs, such as SRL16. However, the
chains of registers in such a scheme appear
randomly and therefore, there are significantly fewer
of them than possible, and thus, the registers in the
scheme are used inefficiently. Additionally, the
delay property of the SRL16 elements, which
changes dynamically, is not used.

In [20], a method of designing pipeline
computers is proposed by displaying a mapping of
spatial data flows (SDF), which is represented in the
resource-time space in the form of a spatial SDF. The
method makes it possible to simultaneously make a
schedule, minimize the number of processor elements
(PEs), and search for an effective system of
connections between this PEs. Here, PE means an
elementary calculator with or without memory, for
example, an adder, a multiplexer with a register, a
FIFO, etc.

At the first stage of the synthesis according to
the indicated method of the vertex-operator of the
homogeneous spatial SDF together with arcs are
located in three-dimensional space as sets of vectors
Ki and D;j 3 taking into account the conditions given
in [21]. At the same time, the coordinates of the
vector Ki = (s,g,t)" mean the number s of PE, where
the operator is executed, type g of PE and frequency
component t, which is equal to the clock number in
the algorithm execution period. Vectors K; with
equal time component form one layer and therefore
are performed simultaneously. Time component
T(Dj) of vector Dj=K;-K; equals to the delay
between operators’ execution, vertex vectors K;, K|
of that are adjacent.

Minimization of the number of PEs is carried
out by fulfilling the requirements |Ksq/—L, i.e., the
number of vertices displayed in the s-th PE goes to

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis

231


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology
2022; Vol. 5 No.3: 228-239

L, where L is the period of execution of the
algorithm, clocks.

At the second stage, the spatial SDF is being
balanced, which consists in adding delay vertices to
the arcs of the graph until the time components of all
vectors Dj are equal to 0 or 1. After that, the spatial
SDF is optimized by mutual permutations of
vectors-vertices from one layer in order to minimize
the number of registers and the number of
multiplexer inputs in the resulting structure and/or
using other strategies, for example,
resynchronization  [20] or wusing  genetic
programming [21]. Also, the number of registers is
minimized by gluing delay vertices from the same
tier that store the same operand.

At the third stage, the obtained optimized
spatial SDF is displayed in the graph of the
computer structure by gluing vertices vectors with
the same coordinates s,g.

Spatial is transformed into the schedule of
execution of operators, using the property that the
time component of vector Ki is equal to the moment
of execution of the operator, regardless of the
number of the execution period. At the same time,
you can avoid building the structure and schedule if
you immediately describe the computer circuit in the
VHDL language [22].

This method is formalized, gives correct
structural solutions that execute the algorithm with a
given period in pipeline mode. Therefore, it makes
sense to create a methodology for the development
of FIFO register buffer devices based on this
method.

The method of synthesis of buffer circuits for
processing one-dimensional data flows

In local image processing, two-dimensional
signal, as usual, transforms into single-dimensional.
So let us consider the case of buffer schematic
synthesis  for  single-dimensional data flow
processing.

Consider some SDF subgraph, which executes
in a register buffer. This subgraph performs operand
X transmission from the source Kiy to the recipients
Kj1, Kin via edges Dj1 = Kj1 - Ki1, Din = Kiz - Kig, and an
operand y from the source K, to the recipients Kj,
Kz via edges Dj2= sz N Kiz, Dp= Kp - Kiz,
respectively (Fig. 2a). In order to the graph executes
in the register buffer, no less than all its input
vertices must have the same spatial coordinate’s p.

On algorithm execution in the register, buffer
operands x and y in each clock are sent to the next
register buffer. It is equivalent to that in balanced
SDF these operands are transmitted in each clock to
the next graph layer and to the next delay vertices
row, which is being mapped to a register buffer. In
the other words, the adjacent delay vertices chains
Kp: while the R(Kp;) coordinates grow steadily and
are placing across parallel straight lines, which are
placed with the same inclination to the ot axis. When
the sequences of the delay vertices R(Dj1), R(Dn),
R(Dj2), R(Di2) are passed, the operands x and y are
put on the corresponding subgraph vertices (Fig. 2b).
The result register buffer schematic is shown on the
Fig.2c.

o t 0 t
X, X,
Ki1 Kiz y y I____)/_
" [ Ro |
s [ Ry |
i Y i
yi \ MU
oy
C d
Fig.2. SDF subgraph mapping into a register buffer:
a — SDF before balancing; b — balanced SDF; ¢ —graph in fig b mapped into a schematic;
d — equivalent schematic mapped to register delays as in SRL16
Source: compiled by the authors
232 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

2022; Vol. 5 No.3: 228-239

The resulting buffer has a single output,
therefore, an additional restriction is imposed on the
subgraph of the SDF — no more than one arc leading
to the output vertex should come from the delay
vertices that belong to the same layer and are
displayed in the buffer. Under this condition, the
output multiplexer of the buffer will connect to only
one register of this buffer at a time. Otherwise, the
buffer must have more than one output or output
multiplexer, as shown by the dotted line in Fig. 2c.

The SRL16 element has the additional clock
signal accept input, controlling which enables
holding up the operands propagation in buffer’s
registers. With the use of this input it is possible to
spare some registers if the R(D;) number is larger
than the quantity of the registers in such a module.
Fig.3 shows the example of the SDF transform of
the one from Fig. 2b in order to make an additional
delay of the operands, which are received in the
vertices Ky, K, for a clock. Such a delay
corresponds to the vectors Dj, which are placed in
parallel to the ot axis.

The design method of pipeline calculators with
register buffers looks like this: Initial data — SDF,
execution period of algorithm L and other
optimization parameters. The method is performed
in the same way as described in [21], with the
exceptions described below.

At the first stage of synthesis, it is necessary to
select subgraphs of the SDF corresponding to the
transfer of operands between computer resources
with time delays and/or shuffling of operands, which
are supposed to be mapped into separate register
buffers.

On the second step, it is required to balance the
dependencies edges using the intermediate delay
vertices. The number of intermediate delay vertices
for all arcs is reduced if possible.

Place the delay vertices on parallel straight lines
that are at an angle to the time axis or parallel to this
axis in such a way that adjacent delay vertices differ
in time coordinate by one clock. Fulfill the
requirements for the correct placement of vertices,
including the requirement to implement a buffer
with one input and one output. If it is not possible to
obtain a buffer with one output, the chain of delay
vertices is split so that they are mapped into
additional buffers (see. Fig. 2d).

Map the dependencies edges, together with
respective delay vertices, which are incident to the
vertices-receivers, into registers buffers. When
compiling the computer control algorithm, if only
arcs are displayed in the buffer that are at an angle to
the time axis, then operands are written to the buffer

registers in each cycle, and if there are arcs parallel
to this axis, then writing to these registers is
prohibited in the corresponding cycles (Fig. 3).

t
Kiz

Kiz

Fig.3. Spatial SDF, which corresponds to SRL16

module with the accept input
Source: compiled by the authors

Kt

In any case, the number of registers in the
buffer can be minimized by applying the left edge
scheduling optimizing algorithm [23]. Still, in such a
case the hardware expenses for additional
multiplexors increase significantly.

On the third step the computing device is
described in VHDL or Verilog language and is
compiled into a FPGA configuration which contains
FIFO buffers on SRL16 elements, that correspond
the dedicated SDF subgraphs.

Consider the example of designing a data-
shuffling buffer according to the z-shaped traversal
rule, which is used in image encoders according to
the H264 standard [24]. If 16 input data signals
arrive on the input of such a buffer in a natural
sequential order, they are brought to the output
according to  the  following sequence:
0,1,4,85,2,3,6,9,12,13,10,7,11,14,15. Usually such a
buffer is built based on two-port rapid access
memory, which leads to irrational resources usage
and high latency between receiving input data and
results output.

A balanced spatial SDF of the functioning
algorithm of such a buffer, which is prepared
according to the developed method is displayed on
the Fig. 4. Here with small circles the input and
output vertices are represented, while the big circles
— are one-clock delay vertices. According to the
spatial SDF method, all the delay vertices, which are
situated on the same horizontal line, map into a
single pipeline register. The description of such a
buffer in VHDL code is given below.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis

233


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology
2022; Vol. 5 No.3: 228-239

Q_O .
Q_O .
FA_O .
Q_O )
Q_O .
ﬂ_o ..
A0
Q_O
Q_O
3 Q_O

S S

X

S S

SESF6

3
\

R Ga)

e
ST

28

363
3

P
i

g
¢
AR

Lo ,
\

Fat

=

X
(R AN

T
L
%
N

98 BEEE
B =77

S
|
g

Fig. 4. Balanced spatial SDF of a shuffle buffer
Source: compiled by the authors
entity BUFZ4x4 is
port(CLK : in STD_LOGIC;
START :in STD_LOGIC; --start of data
DI : in STD_LOGIC_VECTOR(11 downto 0);
--input data
DO : out STD_LOGIC_VECTOR(11 downto
0) ); --output data
end BUFZ4x4;
architecture BUFSRL16 of BUFZ4x4 is
type TARRAY16 is array (0 to 15) of
bit_vector(11 downto 0);
type TN is array(0 to 15) of natural range 0 to
10;
signal srl16: TARRAY16;
- register array of SRL16
constant ntable
:TN:=(5,5,3,0,4,8,8,6,4,2,2,6,10,7,5,5); -- reg

outputs of SRL16

signal regnumber, addr:natural range 0 to 15;
begin

FSM:process(CLK,RST) begin  -- period
counter

if CLK'event and CLK="1" then
if START="1' then addr<=0; else
addr<=(addr+1) mod 16; end if;
end if;
end process;
regnumber <=ntable(addr);
--mapping clock number to reg output of SRL16
SRL16 BUF:process(CLK) begin
--SRL16 description
if CLK'event and CLK="1' then
srl16<=DI & srl16(0 to 14);
-- FIFO shift
end if;
end process;
DO<= srl16(regnumber); -- output of the
shuffled datum from the register SRL16
end BUFSRL16;

SEENRER RS REN

The resulting buffer when configured in the
Xilinx Virtex-7 FPGA has minimal hardware costs —
19 LUTs, of which 12 LUTs are SRL16 elements.
This buffer can be used at a clock frequency of up to
900 MHz. Such results show the effectiveness of the
developed method.

The method of synthesis of buffer circuits for
processing two-dimensional data streams

A two-dimensional array representing an image
frame is stored in external DRAM and sent to the
FPGA for processing pixel by pixel according to the
frame scan law or some other rule. This data flow
must be temporarily stored in an internal buffer,
from which the data belonging to a certain aperture
is read (Fig. 1).

According to the spatial SDF method, the
position of a pixel in a DDR can be encoded by a
vector

Ki = (1, S2i, G, 1),

where s1, s; are coordinates of the pixel in the frame
in the row and column, respectively; q is the type of
storage device; t is the moment in time under
consideration.

When transferring a frame to the FPGA buffer
memory, its pixels are displayed in the data flow
elements

Ki'=(s,q’ 1),
where s — is the number of line when transmitting
several pixels at the simultaneously.

According to the systolic processors designing
theory [25] and the parallel processor structures
synthesis method [26], such a mapping Ki’= R(Kj),
must be injective, linear and monotonous. Here,
injectivity means that no two pixels can be stored in
the same memory cell or transmitted over the
communication line at the same time. Linear and
monotonic mapping preserves the dependence of
pixel precedence.

If frame transmission is used according to the
law of line scanning when data is transmitted
through one line, and the time is counted in clocks,
then the display function is as following:

R(Sli ! SZi ! q’t)T = (0, q " Nsli + SZi +t)T ' (1)

where N is frame’s width.

The data buffer makes it possible to obtain from
the signal K’ the currently processed pixels with the
coordinates K;”, which belong to the aperture
(Fig. 1). Thus, the buffer functioning algorithm is
described with the set of vector-edges

D, =K, -K;. (2)

234

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

2022; Vol. 5 No.3: 228-239

The sets of vectors Kj’, K;j” and Dj form the
spatial SDF. According to this SDF the buffer
schematic is synthesized just as is described in the
previous section.

Consider an example of designing a buffer for
filtering with a filter with an aperture of 3x3. Let the
image frame have dimensions of 5x8, thereby, N=8
and contains of pixels x;; (see Fig. 5). The pixels of
the frame are being read by rows and they are used
to form the data flow x«=Xij, where k=Ni+ j].
Vertex vectors Ky’ correspond to flow elements.
Operator vertex K” collect the data from nine pixels
and therefore it is connected via vectors-edges
D= Kk’ — K with the flow vertices, which mark the
aperture’s pixels.

Balanced spatial SDF of the buffer functioning
algorithm, which is prepared with the method, is
presented on Fig.6. Here the delay vertices, which
are mapped into two rows buffers, highlighted by
rectangles. The rest of the delay vertices are mapped
into the respective pipeline registers. The resulting
structure is matching the structure shown in Fig.1. If
necessary, the N = 8 parameter can be replaced with
any number, as well as the aperture size.

Therefore, the proposed method allows
formalized construction of buffer circuits for image

Xij

0.0(0.1/0.2/0.3|0.4|0.5/0.6|0.7
1.0|1.1)1.2|11.3|1.4]1.5|1.6|1.7
2.0|12.1|2.2|2.3|2.4|2.5|2.6|2.7
3.0|3.1|3.2 3.P 3.4|3.5(3.6|3.7
4.0(4.1|14.2|14B|4.4|145/4.6\4.7

Xk = Xijj
|

processing. In this example, the processing block
executing the function f(x(k)) receives input data in
one clock cycle. If necessary, the method can
provide data presentation in arbitrary cycles, for

example, when thinning data during image
decimation.
This method was applied during the

development of an intelligent video camera that
processes images with a wide dynamic range [27].
At the same time, the method made it possible to
abandon the use of external memory for saving
image frames, to ensure the development of image
processing pipeline blocks with an arbitrary order of
incoming data from buffer memory blocks.

Simulation and hardware implementation
results

According to the simulation results of the
method of designing buffer circuits, an experimental
sample of the technical vision system for receiving
the video stream from the HDR sensor, processing it
and outputting it to the display via the HDMI
interface is simulated. The model is implemented in
a prototype built based on the Helion-60 board of the
Helionvision company, on which the Lattice ECP-3
LFE3-70EA FPGA is installed.

k= ... 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29...
VN y \’
O Q. 0O Q. Q. O K’k Q O
DkR
S

L.,

0

Ad

K |

Fig. 5. Display of the frame in the spatial SDF of the buffer

Source: compiled by the authors

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis 235


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology
2022; Vol. 5 No.3: 228-239

k=..9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29...

Ll
Q

)

R

AN :

Vol

Row bufferl

R

Row buffer2

K ( Tx(K)

Fig. 6. Balanced spatial SDF of buffer

Source: compiled by the authors

The component modules of the system and their
parameters are given in Table 1.

The DECOMP block decompresses the input
12-bit video stream to 20 bits.

The GIST block calculates the distribution of
pixels by brightness and outputs to the NORM1
block the parameters that are necessary for image
normalization. The COL_FILTR5 block performs
reverse color filtering (debayerization), i.e., restores
image colors using interpolation.

The MEDIANF_3X3 filter performs median
filtering of the image, improving the signal-to-noise
ratio. The BW block extracts the brightness
component from the video signal. The
HDR_FILTR53 block, thanks to adaptive filtering,
compresses the dynamic range of the video signal
from 18 to 8 bits for the brightness component. The
COLOR_REST block restores the colors for the
compressed image.

Table 1. Component modules of the technical vision system

Module name Purpose Q-ty Q-ty Q-ty Q-ty | Max clock | Latency
LUT | Triggers | Adders | Mem. | frequency,
blocks MHz
DECOMP HDR-video 46 60 - - 280 3
decompressor
GIST Histogram building 892 59 - - 139 N-'m
COL_FILTR5 Debayerization 279 779 4 169 2N+ 6
MEDIANF_3X3 | Median filter 9689 3906 - 6 61 N+ 3
BW Convert to black and 22 10 - - 270 1
white image
HDR_FILTR53 | HDR-compressor 8400 3313 37 4 41 2N + 16
COLOR_REST | Color restoring 156 490 3 - 28 1
NORM1 Normalization block 76 60 1 - 164 1
Source: compiled by the authors
236 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

2022; Vol. 5 No.3: 228-239

After compiling the technical vision system
project, the results are shown in Table 2. Analysis
of the design results of memory blocks showed
that their required number is quite small.

Table 2. Project compiling results

FPGA elements | Quantity | Available | %
Configurable 8563 33264 | 25.7
logic blocks
(CLB slices)

Triggers 5694 66528 8.6
Multiplexors 34 128 26.6
18x18

Memory blocks 56 240 23.3
1024x18

Source: compiled by the authors
CONCLUSIONS

A review of the ways in which image data
can be put into the FPGA for processing has
shown that the best data storage strategy is one
that involves storing as much of the data as

possible in the FPGA's buffer memory blocks.
Therefore, the development of methods for
organizing such buffers is demanded. The
proposed method of synthesis of blocks of buffer
memory is based on the method of mapping
spatial SDF into computing resources. At the
same time, buffer memory registers are used as
resources. The new method consists in converting
a two-dimensional representation of an image into
a one-dimensional one, constructing a spatial SDF
and describing it in a hardware description
language such as VHDL. In contrast to known
methods of designing buffer circuits, the method
makes it possible to carry out their development
in a formalized manner with the minimization of
hardware costs, directing the synthesis to obtain
buffers of the FIFO type or random access
memory or register memory, ensuring a
predetermined order of data input and output. The
level of formalization of the method makes it
possible to implement it in automated design
systems.

REFERENCES

1. Wang, J., Zhong, S., Yan, L. & Cao, Z. “An embedded system-on-chip architecture for real-time
visual detection and matching”. IEEE Trans. Circuits Syst. Video Technol. 2014; 24: 525-538.
DOI: https://doi.org/10.1109/TCSVT.2013.2280040.

2. Mondal, P., Biswal, P.K. & Banerjee, S. “FPGA based accelerated 3D affine transform for real-time
image processing applications”. Computers & Electrical Engineering. 2016; 49: 69-83.
DOI: https://doi.org/10.1016/j.compeleceng.2015.04.017.

3. Perri, S., Frustaci, F., Spagnolo, F. & Corsonello, P. “Design of real-time FPGA-based embedded
system for stereo vision”. In Proceedings of the 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). Florence: Italy. 2018. p. 1-5. DOI: https://doi.org/10.1109/ISCAS.2018.8351886.

4. Conti, F., Rossi, D., Pullini, A., Loi, I. & Benini, L. “PULP: A ultra-low power parallel accelerator
for energy-efficient and flexible embedded vision™. Journal of Signal Processing Systems. 2016. p. 339-354.
DOI: https://doi.org/10.1007/s11265-015-1070-9.

5. Stevanovic, U., Caselle, M., Cecilia, A., Chilingaryan, S., Farago, T., Gasilov, S., Herth, A,
Kopmann, A., Vogelgesang, M., Balzer, M., Baumbach, T. & Weber, M. A. “Control system and streaming
DAQ platform with image-based trigger for X-ray Imaging”. IEEE Transactions on Nuclear Science. 2015;
62: 911-918. DOI: https://doi.org/10.1109/TNS.2015.2425911.

6. Guo, C., Meguro, J., Kojima, Y. & Naito, T. “A multimodal ADAS system for unmarked urban
scenarios based on road context understanding”. IEEE Transactions on Intelligent Transportation Systems,
2015; 16: 1690-1704. DOI: https://doi.org/10.1109/T1TS.2014.2368980.

7. Ma, Y., Cao, Y., Vrudhula, S. & Seo, J. S. “An automatic RTL compiler for high-throughput FPGA
implementation of diverse deep convolutional neural networks”. Proceedings of the 27" International
Conference on Field Programmable Logic and Applications (FPL). Ghent: Belgium. 2017. p. 1-8.
DOI: https://doi.org/10.23919/FPL.2017.8056824.

8. Dessouky, G., Klaiber, M.J., Bailey, D.G. & Simon, S. “Adaptive dynamic on-chip memory
management for FPGA-based reconfigurable architectures”. Proceedings of the 24" International
Conference on Field Programmable Logic and Applications (FPL). Munich: Germany. 2014. p. 1-8.
DOI: https://doi.org/10.1109/FPL.2014.6927471.

9. Kim, K. & Kumar, V. K. P. “Parallel memory systems for image processing”. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. San Diego: California, USA. 1989. p.
654-659. DOI: https://doi.org/10.1109/CVPR.1989.37915.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis 237


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology
2022; Vol. 5 No.3: 228-239

10. Khan, S., Bailey, D. & Sen Gupta, G. “Simulation of triple buffer scheme (comparison with double
buffering scheme)”. Proceedings of the 2™ International Conference on Computer and Electrical
Engineering (ICCEE 2009). Dubai: UAE. 2009; 2: 403-407. DOI: https://doi.org/10.1109/ICCEE.2009.226.

11. Churiwala, S. “Designing with Xilinx® FPGAs: Using Vivado”. Springerz. Switzerland. 2017.
DOI: https://doi.org/10.1007/978-3-319-42438-5.

12. Sedcole, P., Cheung, P. Y. K., Constantinides, G. A. & Luk, W. “Run-time integration of
reconfigurable video processing systems”. IEEE Transactions on VLSI Systems. 2007; 15 (9): 1003-1016.
DOI: https://doi.org/10.1109/TVLSI1.2007.902203.

13. “ChipScope Pro 10.1 Software and Cores User Guide”. Vol. UG029, Xilinx Inc. — Available from:
https://docs.xilinx.com/v/u/en-US/chipscope_pro_sw_cores 10 1 ug029. — [Accessed: 07.09.2021].

14. Shi R., Wong J. S. J. & So, H. K. “High-throughput line buffer microarchitecture for arbitrary sized
streaming image processing”. J Imaging. 2019; 5(3): 34. DOI: https://doi.org/10.3390/jimaging5030034.

15.Bailey D. G. & Ambikumar A. S. “Border handling for 2D transposes filter structures on an FPGA”.
Journal of Imaging. 2018; 4(12): 138. DOI: https://doi.org/10.3390/jimaging4120138.

16. lkarashi, Y. Ragan-Kelley, J. Fukusato, T. Kato, J. & lgarashi, T. “Guided optimization for image
processing pipelines”. IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
2021. p. 1-5. DOI: https://doi.org/10.1109/VL/HCC51201.2021.9576341.

17. Ozkan, M. A., Reiche, O., Hannig, F. & Teich, J. “FPGA-based accelerator design from a domain-
specific language”. Proceedings of the 26" International Conference on Field Programmable Logic and
Applications (FPL). Lausanne: Switzerland. 2016. p. 1-9. DOI: https://doi.org/10.1109/FPL.2016.7577357.

18. Lee, E. A. & Neuendorffer, S. “Concurrent models of computation for embedded software”. IEE
Proc.-Comput. Digit. Tech. March 2005; 152 (2): 239-250. DOI: https://doi.org/10.1049/ip-cdt:20045065.

19. Waidyasooriya, H. M. A., Haiyama, M. & Uchiyama, K. “Design of FPGA-based computing
systems with OpenCL”. Springer. 2018. DOI: https://doi.org/10.1007/978-3-319-68161-0.

20. Sergiyenko, A., Serhienko, A. & Simonenko, A. “A method for synchronous dataflow retiming”.
IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). 2017. p. 1015-1018.
DOI: https://doi.org/10.1109/UKRCON.2017.8100404.

21. Sergiyenko, A., Serhienko, A. & Romankevich, V. “Genetic programming of pipelined datapaths
for FPGA”. IEEE 40th International Conference on Electronics and Nanotechnology (ELNANQO). 2020. p.
802-806. DOI: https://doi.org/10.1109/ELNANO50318.2020.9088773.

22. Maslennikow, O. & Sergiyenko, A. “Mapping DSP algorithms into FPGA”. International
Symposium on Parallel Computing in Electrical Engineering (PARELEC'06). 2006. p. 208-213.
DOI: https://doi.org/10.1109/PARELEC.2006.51.

23. Ruvald Pedersen M. & Madsen, J. “Optimal register allocation by augmented left-edge algorithm on
arbitrary control-flow structures”. NORCHIP 2012. 2012. p. 1-6. DOI: https://doi.org/10.1109/
NORCHP.2012.6403107.

24. Richardson, I. E. G. “H.264 and MPEG-4 video compression. Video coding for next-generation
multimedia”. Wiley. 2003. p. 281. DOI: https://doi.org/10.1002/0470869615.

25. Cong, J. & Wang, J. “PolySA: Polyhedral-based systolic array auto-compilation”. IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 2018. p. 1-8. DOI: https://doi.org/10.1145/
3240765.3240838.

26. Sergiyenko, A. & Simonenko, V. “The displaying of periodic algorithms into field programmable
gate arrays”. Electronic Modelling. 2007; 29 (2): 49-61.

27. Sergiyenko, A., Serhiienko, P. & Zorin, J. “High dynamic range video camera with elements of the
pattern recognition”. IEEE 38" International Conference on Electronics and Nanotechnology (ELNANO).
2018. p. 435-438. DOI: https://doi.org/10.1109/ELNANO.2018.8477556.

Conflicts of Interest: the authors declare no conflict of interest

Received 22.08.2022

Received after revision 04.10.2022

Accepted 18.10.2022

238 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)


http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology
2022; Vol. 5 No.3: 228-239

DOI: https://doi.org/10.15276/aait.05.2022.16
VIK 004.383

bydepuszauis 300pakeHb npu ix 00poodIIi y creniajgizoBaHuX Mpoecopax
Ceprienko Anarodaiii Muxaiiaosny?
ORCID: http://orcid.org/0000-0001-5965-1789; asergy@bigmir.net. Scopus Author 1D: 27868137900

Pomankesu4 Bitauiii Onexciiiopua®)
ORCID: http://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058

Ceprienxo Iasio Anaroiiiopny?
ORCID: http://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author I1D: 57204497516

) Hanjonansruii TexHiunmit yHiBepenter Yrpainn «KuiBchkuit momitexuiunmii incturyT imMeni Irops Cikopebkoroy, mp. Tlepemorn,
37. Kuis, 03056, Ykpaina

AHOTAIIIS

V 6arateox 3actocyHKax s [uppoBoi oOpoOKH 300paxkeHb, sIKi peali3oBaHi y MPOrpaMOBAaHHUX JIOTIYHHX IHTErPaJbHUX
cxeMax, Kaapu 300pakeHHs, II0 OoOpOOSAIOThCs, 30epiraloThCsl y 30BHIMIHIM OuHamiuHiM mam’saTi. [IpoayKTHBHICTH Takoro
3aCTOCYHKY 3aJISKUTh BiJl INBUAKOMI TMHAMIUHOI mam’ATi Ta HEOOXiAHOI KITBKOCTI 3B€pTaHb J10 Hel MiJ 4Yac BUKOHAHHS alTrOPUTMY.
Lls mpOooyKTHBHICTh ONTHUMI3YETHCS 3aBISKHM BHKOPUCTAHHIO Oy(epHOi mam’sTi, sika peani3oBaHa y MPOTPaMOBAHUX JIOTTUHHX
IHTEeTpalIbHUX cXeMaX. AJie He iCHye 3araJbHOTO METOAY, KUl OM IaB 3Mory (OpManbHO CHHTEe3yBaTH OydepHy mam’sTh 3
3aJaHUMH TIPOITYCKHOIO 3/IaTHICTIO, TIOPSIKOM CIiTyBaHHS BXIJHUX 1 BUXIIHUX JaHUX Ta MiHIMi30BaHMMH allapaTHUMH BHTPaTaMU.
B poGoti posrmsmaroThes OCOOIMBOCTI BBOAY M 00poOKH 300pakeHb y CIEHiali30BaHHX IpoLecopax Ha 0a3i mporpaMoBaHUX
JIOTIYHUX IHTErpalbHUX CXeMaxX. AHANI3YIOThCS METOIH MOOYHOBH OydepHHX cXeM y NpOrpaMOBaHUX JIOTIYHHMX IHTErpaJbHUX
cXeMax, 3aBJSKH SIKHM 3MEHINYETHCS IHTCHCHBHICTH OOMIHIB JaHUMHU 3 30BHIIIHBOIO I1aM’STTIO. [IPHBOJUTECS METOX CHHTE3Y
KOHBEEPHUX CXeM 3 3aJlaHUMH XapaKTepPUCTHKAMU HPOAYKTHBHOCTI Ta IOPSAKOM CIiTyBaHHS IaHUX, SKHH IPYHTYEThCS Ha
BiZTOOpakeHHI NPOCTOPOBOTO rpady CHHXPOHHHX IIOTOKIB JAQHHX y CTPYKTYpY, LIO pealizoBaHa B IPOTPAMOBAHHUX JIOTIYHUX
IHTErpaJbHUX cXeMaxX. 3alpOIOHOBAaHUN METO]] IPOSKTyBaHHs Oy(epHHUX CXeM, SIKHi 3aCHOBaHHMII Ha BiJOOpa)kKEeHHI MPOCTOPOBOTO
rpady CHHXpOHHHMX IIOTOKIB JaHHX Y JIOKaJbHY IIaM’sITh Yy BUIJIIIl JIAQHIJIOKKIB KOHBEEPHHUX pericTpiB. Meron nae 3mory
OpraHi3yBaTH MHOTIK BXITHHMX NaHUX Ha BXiJ BOYZOBaHMX KOHBEEPHHX OJIOKIB 0OpOOKM 300pakeHb, B SKOMY AaHi CIIIYIOTh y
3aJJaHOMY TIOPS/IKY, a TAKOK MiHIMi3yBaTu 00’eM OydepHoi mam’saTi. Meton 3abe3neuye BUKOPUCTAHHS B IPOTPaMOBaHKX JIOTIYHUX
IHTErpaJbHUX cXeMaX BOYIOBAaHMX JMHAMIYHO PETYJIBOBAaHMX PETICTPOBHX 3aTPUMOK, IO HifBHINye edeKTHBHICTH Oydepusaril.
Meton Oyno TepeBipeHO TMPHU po3poOIll IHTENEKTYalIbHOI BiJCOKAMEPH, SKa BUKOHYE ajJrOPUTM CTHCHCHHS BiJIe0300pakCHHS 3
NIMPOKKUM JIHHAMIYHHM Jiaia30HoM 3a aropurMoM Retinex i ogHo9acHO BUALIE XapaKTePHi TOUKH Y 300paKeHH] IS TOAAIBIIOT0
posmizHaBaHHs o0Opa3iB. [Ipm npOMy BHKOHYeTbCsl OaraTokpaTHa JAenMMarlist Kaapa. 3aBIsKH OaraTokpaTHil Oydepuzarii
300pakeHHs Y MPOTPaMOBaHUX JIOTIYHHX IHTETPAIBHUX CXEMax, BAAIOCh YHUKHYTH 3aCTOCYBaHHS 30BHIIIHBOT AMHAMIYHOT ITaM’sITi.

KmiouoBi cioBa: IlporpamoBaHi JoriuHi iHTerpaylbHi CXeMH, Tpad CHHXPOHHHMX ITOTOKIiB JaHUX; OOpoOKa 300pakeHb,
OydepHa mam’sITh

Copyright © Hauionansnuii ynisepcurer «Onecbka nositexnika», 2022, Bei npasa 3axuieni
ABOUT THE AUTHORS

Anatolij M. Sergienko - Doctor of Engineering Sciences, Professor, Professor of Department of Computer Engineering.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Av. Kyiv, 03056, Ukraine
ORCID: http://orcid.org/0000-0001-5965-1789; asergy@bigmir.net. Scopus Author ID: 27868137900

Research field: Computer architecture; hardware synthesis; digital signal processing

Ceprienko AnaroJiii MuxaiiJioBUY - JOKTOp TEXHIYHHX HayK, npodecop , mpodecop Kadeapy 00UHCIFOBAIEHOI TEXHIKH.
Harionansanit Texniunmii yHiBepcuter Ykpainm «KuiBcbkuii momitexHiuruit iHCTHTYT iMeHi Irops Cikopchkoroy, Tp.
Tlepemorwu, 37. Kuis, 03056, Ykpaina

Vitalij O. Romankevich - Doctor of Engineering Sciences, Professor, Professor of System Programming and Special
Computer System Department. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37,
Peremogy Av. Kyiv, 03056, Ukraine

ORCID: http://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058

Research field: Dependability of fault-tolerant multiprocessor control systems; self-testing of multiprocessor systems

PomankeBuu Biraniii OuekciiioBn4 — 1okTop TexHiuHMX Hayk, mpodecop, mpodecop kadeapu CucremHOro
MPOrpaMyBaHHs Ta CIEIialbHUX KOMIT'IOTEpPHHX cucTeM. HarioHanbHuii TexHiuHMI yHiBepcuteT Ykpainu «KuiBcbkuit
noJyiTexHiyHui iHcTUTYT iMeHi Irops Cikopcbkoroy, p. Ilepemorn, 37. Kuis, 03056, Ykpaina

Pavlo A. Serhiienko - PhD student, Assistant of Department of System Programming and Specialized Computer Systems.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Av. Kyiv, 03056, Ukraine
ORCID: http://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

Research field: Pattern recognition in images; embedded high-performance manycore systems in FPGA

Cepricuko IlaBio AuHaToqiiioBu4 — acmipant, acucteHT Kadenpu CHCTEMHOrO MPOrpaMyBaHHS Ta CHCHIATBHHX
KOMIT'FOTepHHX cucteM. Harionanenuit TexHiunmil yHiBepcuter Ykpainu «KuiBchkuii momiTexHigHmit iHCTUTYT iMeHi Iropst
Cikopcbkoroy, p. Ilepemorn, 37. Kuis, 03056, Ykpaina

ISSN 2617-4316 (Print) Software engineering and systems analysis 239
ISSN 2663-7723 (Online)


http://aait.ccs.od.ua/index.php/journal/theme3
mailto:paulsrgnk002@gmail.com

