
Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

228 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.05.2022.16

UDC 004.383

Image buffering in application specific processors

Anatoliy M. Sergiyenko1)

ORCID: http://orcid.org/0000-0001-5965-1789; asergy@bigmir.net. Scopus Author ID: 27868137900

 Vitaliy O. Romankevich1)
ORCID: http://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058

 Pavlo A. Serhiienko1)

ORCID: http://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

1) National Technical University of Ukraine “Igor Sikorsky KPI”. 37, Peremohy Ave. Kyiv, 03056, Ukraine

ABSTRACT

In many digital image-processing applications, which are implemented in field programmable gate arrays, the currently

processed image's frames are stored in external dynamic memory. The performance of such an application depends on the dynamic

memory speed and the necessary requests quantity during algorithm’s runtime. This performance is being optimized through field

programmable gate arrays - implemented buffer memory usage. But there is no common method for the formal buffer memory

synthesis with preset throughput, input and output data sequence order and minimized hardware costs. In this article, the features of

image input and processing based on Field Programmable Gate Array are considered. The methods of building buffer circuits in field

programmable gate arrays, due to which the intensity of data exchanges with external memory is reduced, are analyzed. The method

of synthesizing pipeline circuits with specified performance characteristics and the data sequence order is given, which is based on

the mapping of the spatial synchronous data flows into the structure implemented in the field programmable gate arrays. A method of

designing buffer schemes is proposed, which is based on the mapping of spatial synchronous data flows into local memory in the

form of chains of pipeline registers. The method helps to organize the data flow of at the input of built-in pipeline units of image

processing, in which the data follow in a given order, and to minimize the amount of buffer memory. The method ensures the use of

dynamically adjustable register delays built into the field programmable gate arrays, which increases the efficiency of buffering. This

method was tested during the development of an intelligent video camera. The embedded hardware implements a video image

compression algorithm with a wide dynamic range according to the Retinex algorithm. The same time it selects characteristic points

in the image for the further pattern recognition. At the same time, multiple decimation of the frame is performed. Due to the multirate

buffering of the image in the field programmable gate arrays, it was possible to avoid using of external dynamic memory.

 Keywords: Field programmable gate array; spatial synchronous data flows; image processing; buffer memory

Copyright © Odessa Polytechnic National University, 2022. All rights reserved

For citation: Sergiyenko A. M., Romankevich V. O., Serhiienko P. A. Image buffering in application specific processors.

Applied Aspects of Information Technology. 2022; Vol.5 No.3: 228–239. DOI: https://doi.org/10.15276/aait.05.2022.16

INTRODUCTION

Advances in FPGA (Field Programmable Gate

Array) technology have made them a platform for

implementing various computer vision algorithms

[1], [2]. The majority of the algorithms are

impossible to be operated in real time on the

general-purpose processors and the graphics

accelerators application is too expensive for it.

Therefore, these algorithms are best suited for

hardware implementation [3]. For example, there is

a significant volume increase of security cameras-

generated data happened. In many systems with a

limited communication throughput exists a need in

remoted image processing in which

© Sergiyenko A., Romankevich V.,

 Serhiienko P., 2022

perform the image collection, processing and

intelligent cameras [4]. They have embedded FPGAs

telecommunications [5]. Since security demands are

increasing, the processing complexity will only

increase. Also the real time image processing

algorithms, such as those used in high-speed vehicle

control [6] require the hardware with high

bandwidth and low latency. That demands are also

satisfied with the use of FPGA. Therefore, a deep

neural network, applied in FPGA, is able of data

video stream processing with latency of 31,85ms [7].

The last generation FPGAs represent an

attractive alternative for image processing

acceleration, as FPGAs contain ARM processors and

programmable logic for computationally intensive

operations acceleration. However, transferred twice

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0)

http://aait.ccs.od.ua/index.php/journal/theme3
mailto:paulsrgnk002@gmail.com

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and systems analysis 229

FPGA have no more than ten MB of built-in

memory. Because of these limited capabilities of on-

board memory, the external DDR-RAM is used for

image frames [8]. This leads to high memory

accessing intensively, which has potentially high

latency, and, as a result, to performance

deterioration or high hardware costs due to the

access paralleling to multiple memory chips and the

power consumption increase, because DDR is highly

energy consuming. This prevents the FPGA

application, especially in large frames processing

with algorithms, which have intensive

communication with memory.

As shown in the above examples, for image

processing tasks it is common to process video

streams at high clock rates and preferably with

minimized latency. For this purpose, on the one

hand, in FPGA should be used pipeline equipment

that is able to work with the input flows of image

pixels, and on the other hand, the buffering of

intermediate images cannot be excessive. Such a

hardware architecture can start image processing in

the very moment when the required pixels set is

accumulated and keep processing in a pipelined

manner, providing both high throughput and low

latency.

In this article examines the organization of

memory access during pipeline image processing in

order to minimize the use of external FPGA

resources, which is a prerequisite for minimizing the

latent delay. The approach to the buffer memory

organization in FPGA is proposed, which ensures

the data flows in the required order between

hardware functional units that are configured in

FPGA. This approach, of course, does not exclude

the external memory access, but it is applicable to

any kind of internal memory in FPGA.

LITERATURE REVIEW

Image processing algorithms, as usual, consist

of several sequentially performed functions. Each of

these functions reads the required pixels quantity

from the image frame's memory unit, processes them

and records the result pixel into another area of this

memory or the other memory block. Since the image

frame occupies relatively large volume, the

hierarchical memory is used in image processing

systems on FPGA. The bottom level of this memory

consists of pipeline registers, middle level – buffer

memory blocks sized of a few kilobytes and the

external memory (DRAM) forms the top level.

The internal FPGA memory has low access

latency, but its capacity is relatively low. In contrast,

the external memory has higher capacity, but higher

latency and lower throughput. In addition, accessing

DRAM consumes significantly more power than

accessing FPGA memory.

Thus in the field of image processing FPGA

architecture it is essential topic – finding – the

balance between built-in buffer and system

performance.

For flow architecture, it is accepted that the

FPGA receives image pixels, row by row, in the

order as they are captured by image sensor. On-chip

buffers in FPGA are used to store multiple frame

lines to access a specific window or aperture, which

is being processed. Yet the most widely used and

comprehensible paradigm remains that the

processing algorithm reads data from any place in

the frame, processes it and writes the results back to

the frames memory. For this purpose, a high

throughput external memory is required and also

buffer memory blocks with a volume-optimized

design.

The simplest approach to increase memory

throughput – is to have a few parallel memory

blocks. Similarly, it is possible to implement a

memory with an extra-large data word length that

stores several adjacent pixels. But in these cases,

besides of several external memory chips, it is

necessary to have many separate FPGA pins for

addresses and data output, which is often

unacceptable.

This problem can be solved by organizing

several cache memory blocks in the FPGA. By

dividing the address space into multiple banks, for

example using one memory bank for odd addresses

and one for even addresses, adjacent addresses can

be accessed simultaneously. For instance, four banks

can be used to access four pixels in the area 2X2.

Furthermore, to effectively access pixels in aperture

the address may be encoded in the manner that is

proposed in [9].

In pipelined random access data processing, one

process can write results to one memory bank, and

another can read data from the second bank. When

the processing of the next frame is completed, the

banks switch roles. At the same time, a third

memory bank is used for better synchronization

[10]. Still, such switching of banks adds one

excessive period to the latency of the algorithm and

has the consequence of increasing the hardware

costs of the system and the use of more FPGA

contacts.

A more practical approach is running the

memory at a higher clock frequency than the rest of

the system. Double Data Rate (DDR) memory is one

example of memory that allows data to be per clock.

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

230 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Normally modern high-capacity FPGAs has

dedicated pins and a built-in access controller for

external dynamic DDR memory of the latest

generations [11]. At the same time, the project

simulates multiport memory due to access time slots.

In addition, blocks of buffer memory are required

for writing and reading, since dynamic memory has

high throughput only when transferring data rows

from neighboring cells. Unfortunately, in many

projects, DDR memory is also crucial for supporting

the operating system of the processor embedded in

the FPGA, and therefore the bandwidth of this

memory drops during processing images.

If the data follows sequentially, then it is worth

using buffers of type first in – first out (FIFO) type,

the cells which store blocks of data, and the pixels at

the output are selected at the local address [12]. One

common form of intermediate data storage is row

buffering. Consider the calculation of a function

from nine pixel values in the aperture. According to

the algorithm, nine pixels have to be read from the

frame memory for each aperture position in each

clock interval, and each pixel have to be read nine

times as the aperture scans the image. Pixels that are

next to each other horizontally are required in

consecutive system clocks, so can be buffered and

held in registers. This reduces the number of

readings to three pixels per clock. The row buffer

stores the pixel values of previous rows to avoid re-

reading the pixel values (Fig. 1).

Each line buffer actually delays pixel input by

one line. An obvious implementation of such a

digital delay is the use of an N-stage shift register,

where N is the width of the image. The RAM block

(BlockRAM) in the FPGA can be configured as a

FIFO buffer according to the circular buffer scheme.

In addition, several parallel line buffers can be

implemented as one buffer, but with a larger data bit

rate [13].

Buffers of different lengths should be designed

for different image sizes. In work [14], it is proposed

to use a universal buffer that can be adjusted to the

size of the frame and aperture with the possibility of

dynamic reconfiguration. A similar buffer is

described in [15], which is additionally capable of

transposing the position of pixels in the window, as

well as performing image correction at its edges.

Works [16, 17] presented general methods of

designing a flow structure for image processing with

an aperture as in the example in Fig. 1. At the same

time, the functions that are sequentially performed in

the algorithm are displayed in the corresponding

processing blocks, which are separated from each

other by buffer blocks that store several adjacent

lines. The interconnections between processing

blocks and buffer blocks are buses that correspond

to the arcs of the data flow graph (DFG) of the

algorithm.

It should be noted that such a scheme executes

the algorithm specified on the network of Kahn

processes [18]. In such a model, the algorithm is

divided into several functions, data between which is

transferred through data flows implemented as

FIFO. Due to this, the intermediate data is reused

many times without referring to the external

memory. This organization of calculations is also

recommended when programming graphic functions

of the OpenCL library in FPGAs [19]. Yet it is

worth noting that the network of Kahn processes is

not protected from blocking.

Therefore, the problems are the following:

1. Optimization of data exchange between

FPGA computing resources and external memory by

improving the design of the corresponding buffer

memory.

2. The designed buffer memory blocks should

have a balance between cost and efficiency,

optimized in size according to the size of the image

being processed.

3. Such memory blocks must be made in the

form of a cyclic FIFO buffer.

Fig.1. A typical image frame processing scheme

Source: compiled by the authors

Output

Row buffer1

Row buffer2 R

g
R

g
R

g

R

g
g g

R

g
R

g
R

g

Input

Filter function

Window

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and systems analysis 231

THE PURPOSE OF THE ARTICLE

When processing images, the best strategy is to

perform data calculations that are stored as much as

possible in buffer memory blocks inside the FPGA.

At the same time, processing is carried out in

pipelined processing blocks, and buffer memory

blocks are FIFO buffers. But the question of how

best to organize data input and transfer of

intermediate results between pipeline processing

units remains open. In addition, the task of

organizing calculations when the period of data

tracking does not coincide with the period of the

clock signal, although it is a multiple of it, has not

been solved. FPGAs manufactured by Xilinx have

the ability to organize FIFO buffers on the basis of

logical tables (look-up tables), which have dynamic

depth reconfiguration. These are SRL16 elements.

But there is no method how they can be effectively

applied for image processing. These questions are

answered in the next section.

Therefore, the aim of the research is the

following:

To propose a method for designing built-in

buffer memory blocks for FPGAs, suitable for

working with pipeline processing blocks, including

clock-asynchronous calculations.

MATERIALS AND RESEARCH METHODS

The used methods

In the study of data buffering algorithms and

their mapping to hardware, the method of mapping

of the spatial synchronous data flows (SDF) was

used [1]. The method considers periodic algorithms

in which the data for processing follows with a

period of P clocks, which also includes image-

processing algorithms. Such an algorithm is

presented as a spatial SDF in space with coordinates

of the type of operation, the place of its execution,

and the moment of its execution. The graph of the

resulting calculator, which executes the algorithm in

the pipeline mode with a period of P clocks, is

obtained by mapping the spatial SPD into the

subspace of structures, and the schedule of execution

of operators into the time subspace.

 Experimentation and prototyping

The resulting conveyor device was described in

the VHDL language directly according to the spatial

SDF. The device was modeled to check the

correctness of the algorithm execution in the VHDL

simulator. For the final test of the device's

functionality, its description was compiled in the

Lattice FPGA CAD and the resulting firmware was

loaded into the ECP3-70 FPGA, which is located on

the Lattice HDR-60 board, which is equipped with a

video sensor.

METHODS OF SYNTHESIS OF BUFFER

SCHEMES BASED ON SPATIAL SPD FOR

DATA FLOW PROCESSING

The method of synthesis of pipeline schemes

for data flow processing

The general approach to the development of a

functional scheme at the level of register transfers is

as follows: a set of resources (adders, multiplication

blocks, registers, etc.) is selected, a schedule of

algorithm operations is drawn up, and operations are

assigned to resources. For this, they find a set of

necessary registers and a resource-switching

network. This approach is also used to design a

circuit with FIFO buffers. At the same time, the

chains of registers built in the scheme are replaced

by appropriate FIFOs, such as SRL16. However, the

chains of registers in such a scheme appear

randomly and therefore, there are significantly fewer

of them than possible, and thus, the registers in the

scheme are used inefficiently. Additionally, the

delay property of the SRL16 elements, which

changes dynamically, is not used.

In [20], a method of designing pipeline

computers is proposed by displaying a mapping of

spatial data flows (SDF), which is represented in the

resource-time space in the form of a spatial SDF. The

method makes it possible to simultaneously make a

schedule, minimize the number of processor elements

(PEs), and search for an effective system of

connections between this PEs. Here, PE means an

elementary calculator with or without memory, for

example, an adder, a multiplexer with a register, a

FIFO, etc.

At the first stage of the synthesis according to

the indicated method of the vertex-operator of the

homogeneous spatial SDF together with arcs are

located in three-dimensional space as sets of vectors

Ki and Dj з taking into account the conditions given

in [21]. At the same time, the coordinates of the

vector Ki = (s,q,t)T mean the number s of PE, where

the operator is executed, type q of PE and frequency

component t, which is equal to the clock number in

the algorithm execution period. Vectors Ki with

equal time component form one layer and therefore

are performed simultaneously. Time component

T(Dj) of vector Dj = Ki - Kl equals to the delay

between operators’ execution, vertex vectors Ki, Kl

of that are adjacent.

Minimization of the number of PEs is carried

out by fulfilling the requirements |Ks,q|→L, i.e., the

number of vertices displayed in the s-th PE goes to

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

232 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

L, where L is the period of execution of the

algorithm, clocks.

At the second stage, the spatial SDF is being

balanced, which consists in adding delay vertices to

the arcs of the graph until the time components of all

vectors Dj are equal to 0 or 1. After that, the spatial

SDF is optimized by mutual permutations of

vectors-vertices from one layer in order to minimize

the number of registers and the number of

multiplexer inputs in the resulting structure and/or

using other strategies, for example,

resynchronization [20] or using genetic

programming [21]. Also, the number of registers is

minimized by gluing delay vertices from the same

tier that store the same operand.

At the third stage, the obtained optimized

spatial SDF is displayed in the graph of the

computer structure by gluing vertices vectors with

the same coordinates s,q.

Spatial is transformed into the schedule of

execution of operators, using the property that the

time component of vector Ki is equal to the moment

of execution of the operator, regardless of the

number of the execution period. At the same time,

you can avoid building the structure and schedule if

you immediately describe the computer circuit in the

VHDL language [22].

This method is formalized, gives correct

structural solutions that execute the algorithm with a

given period in pipeline mode. Therefore, it makes

sense to create a methodology for the development

of FIFO register buffer devices based on this

method.

The method of synthesis of buffer circuits for

processing one-dimensional data flows

In local image processing, two-dimensional

signal, as usual, transforms into single-dimensional.

So let us consider the case of buffer schematic

synthesis for single-dimensional data flow

processing.

Consider some SDF subgraph, which executes

in a register buffer. This subgraph performs operand

x transmission from the source Ki1 to the recipients

Kj1, Kl1 via edges Dj1 = Kj1 - Ki1, Dl1 = Kl1 - Ki1, and an

operand у from the source Ki2 to the recipients Kj2,

Kl2 via edges Dj2= Kj2 - Ki2, Dl2= Kl2 - Ki2,

respectively (Fig. 2a). In order to the graph executes

in the register buffer, no less than all its input

vertices must have the same spatial coordinate’s p.

On algorithm execution in the register, buffer

operands х and у in each clock are sent to the next

register buffer. It is equivalent to that in balanced

SDF these operands are transmitted in each clock to

the next graph layer and to the next delay vertices

row, which is being mapped to a register buffer. In

the other words, the adjacent delay vertices chains

KDі while the R(KDі) coordinates grow steadily and

are placing across parallel straight lines, which are

placed with the same inclination to the ot axis. When

the sequences of the delay vertices R(Dj1), R(Dl1),

R(Dj2), R(Dl2) are passed, the operands х and у are

put on the corresponding subgraph vertices (Fig. 2b).

The result register buffer schematic is shown on the

Fig.2c.

Fig.2. SDF subgraph mapping into a register buffer:

a – SDF before balancing; b – balanced SDF; c – graph in fig b mapped into a schematic;

d – equivalent schematic mapped to register delays as in SRL16
Source: compiled by the authors

Ki1

x

Ki2 y

Kj1

Kj2
Kl1 Kl2

Dj1

Dj2

Dl1

Dl2

o t

s

Kj1

Kj2
Kl1 Kl2

Ki1
Ki2

o t

s

y

а b

Rg

Rg

Rg

Rg

MUX

x,y

c

Rg

Rg

Rg

Rg

MUX

x,y

d

Rg

Rg

y

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and systems analysis 233

The resulting buffer has a single output,

therefore, an additional restriction is imposed on the

subgraph of the SDF – no more than one arc leading

to the output vertex should come from the delay

vertices that belong to the same layer and are

displayed in the buffer. Under this condition, the

output multiplexer of the buffer will connect to only

one register of this buffer at a time. Otherwise, the

buffer must have more than one output or output

multiplexer, as shown by the dotted line in Fig. 2c.

The SRL16 element has the additional clock

signal accept input, controlling which enables

holding up the operands propagation in buffer’s

registers. With the use of this input it is possible to

spare some registers if the R(Dj) number is larger

than the quantity of the registers in such a module.

Fig.3 shows the example of the SDF transform of

the one from Fig. 2b in order to make an additional

delay of the operands, which are received in the

vertices Kl1, Kl2, for a clock. Such a delay

corresponds to the vectors Dj, which are placed in

parallel to the ot axis.

The design method of pipeline calculators with

register buffers looks like this: Initial data – SDF,

execution period of algorithm L and other

optimization parameters. The method is performed

in the same way as described in [21], with the

exceptions described below.

At the first stage of synthesis, it is necessary to

select subgraphs of the SDF corresponding to the

transfer of operands between computer resources

with time delays and/or shuffling of operands, which

are supposed to be mapped into separate register

buffers.

On the second step, it is required to balance the

dependencies edges using the intermediate delay

vertices. The number of intermediate delay vertices

for all arcs is reduced if possible.

Place the delay vertices on parallel straight lines

that are at an angle to the time axis or parallel to this

axis in such a way that adjacent delay vertices differ

in time coordinate by one clock. Fulfill the

requirements for the correct placement of vertices,

including the requirement to implement a buffer

with one input and one output. If it is not possible to

obtain a buffer with one output, the chain of delay

vertices is split so that they are mapped into

additional buffers (see. Fig. 2d).

Map the dependencies edges, together with

respective delay vertices, which are incident to the

vertices-receivers, into registers buffers. When

compiling the computer control algorithm, if only

arcs are displayed in the buffer that are at an angle to

the time axis, then operands are written to the buffer

registers in each cycle, and if there are arcs parallel

to this axis, then writing to these registers is

prohibited in the corresponding cycles (Fig. 3).

Fig.3. Spatial SDF, which corresponds to SRL16

module with the accept input
Source: compiled by the authors

In any case, the number of registers in the

buffer can be minimized by applying the left edge

scheduling optimizing algorithm [23]. Still, in such a

case the hardware expenses for additional

multiplexors increase significantly.

On the third step the computing device is

described in VHDL or Verilog language and is

compiled into a FPGA configuration which contains

FIFO buffers on SRL16 elements, that correspond

the dedicated SDF subgraphs.

Consider the example of designing a data-

shuffling buffer according to the z-shaped traversal

rule, which is used in image encoders according to

the H264 standard [24]. If 16 input data signals

arrive on the input of such a buffer in a natural

sequential order, they are brought to the output

according to the following sequence:

0,1,4,8,5,2,3,6,9,12,13,10,7,11,14,15. Usually such a

buffer is built based on two-port rapid access

memory, which leads to irrational resources usage

and high latency between receiving input data and

results output.

A balanced spatial SDF of the functioning

algorithm of such a buffer, which is prepared

according to the developed method is displayed on

the Fig. 4. Here with small circles the input and

output vertices are represented, while the big circles

– are one-clock delay vertices. According to the

spatial SDF method, all the delay vertices, which are

situated on the same horizontal line, map into a

single pipeline register. The description of such a

buffer in VHDL code is given below.

Kj1

Kj2 Kl2 Kl1

Ki1
Ki2

t

s

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

234 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Fig. 4. Balanced spatial SDF of a shuffle buffer

Source: compiled by the authors

entity BUFZ4x4 is

 port(CLK : in STD_LOGIC;

 START : in STD_LOGIC; -- start of data

 DI : in STD_LOGIC_VECTOR(11 downto 0);

--input data

 DO : out STD_LOGIC_VECTOR(11 downto

0)); --output data

end BUFZ4x4;

architecture BUFSRL16 of BUFZ4x4 is

 type TARRAY16 is array (0 to 15) of

bit_vector(11 downto 0);

 type TN is array(0 to 15) of natural range 0 to

10;

 signal srl16:TARRAY16;

- register array of SRL16

 constant ntable

:TN:=(5,5,3,0,4,8,8,6,4,2,2,6,10,7,5,5); -- reg

outputs of SRL16

 signal regnumber, addr:natural range 0 to 15;

begin
 FSM:process(CLK,RST) begin -- period

counter

 if CLK'event and CLK='1' then

 if START='1' then addr<=0; else

addr<=(addr+1) mod 16; end if;

 end if;

 end process;

 regnumber <=ntable(addr);

--mapping clock number to reg output of SRL16

 SRL16_BUF:process(CLK) begin

 --SRL16 description

 if CLK'event and CLK='1' then

 srl16<=DI & srl16(0 to 14);

-- FIFO shift

 end if;

 end process;

 DO<= srl16(regnumber); -- output of the

shuffled datum from the register SRL16

end BUFSRL16;

The resulting buffer when configured in the

Xilinx Virtex-7 FPGA has minimal hardware costs –

19 LUTs, of which 12 LUTs are SRL16 elements.

This buffer can be used at a clock frequency of up to

900 MHz. Such results show the effectiveness of the

developed method.

The method of synthesis of buffer circuits for

processing two-dimensional data streams

A two-dimensional array representing an image

frame is stored in external DRAM and sent to the

FPGA for processing pixel by pixel according to the

frame scan law or some other rule. This data flow

must be temporarily stored in an internal buffer,

from which the data belonging to a certain aperture

is read (Fig. 1).

According to the spatial SDF method, the

position of a pixel in a DDR can be encoded by a

vector

Ki = (s1i, s2i, q, t)T,

where s1, s2 are coordinates of the pixel in the frame

in the row and column, respectively; q is the type of

storage device; t is the moment in time under

consideration.

When transferring a frame to the FPGA buffer

memory, its pixels are displayed in the data flow

elements

Kj’ = (s, q’, t’)T,

where s – is the number of line when transmitting

several pixels at the simultaneously.

 According to the systolic processors designing

theory [25] and the parallel processor structures

synthesis method [26], such a mapping Ki’ = R(Ki),

must be injective, linear and monotonous. Here,

injectivity means that no two pixels can be stored in

the same memory cell or transmitted over the

communication line at the same time. Linear and

monotonic mapping preserves the dependence of

pixel precedence.

If frame transmission is used according to the

law of line scanning when data is transmitted

through one line, and the time is counted in clocks,

then the display function is as following:

 1 2 1 2(, , ,) (0, ',)T T

i i i iR s s q t q Ns s t   , (1)

where N is frame’s width.

The data buffer makes it possible to obtain from

the signal Kj’ the currently processed pixels with the

coordinates Kj”, which belong to the aperture

(Fig. 1). Thus, the buffer functioning algorithm is

described with the set of vector-edges
'' '

j j iD K K  . (2)

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and systems analysis 235

The sets of vectors Kj’, Kj” and Dj form the

spatial SDF. According to this SDF the buffer

schematic is synthesized just as is described in the

previous section.

Consider an example of designing a buffer for

filtering with a filter with an aperture of 3×3. Let the

image frame have dimensions of 5×8, thereby, N=8

and contains of pixels xi,j (see Fig. 5). The pixels of

the frame are being read by rows and they are used

to form the data flow xk = xi,j, where k = Ni + j.

Vertex vectors Kk’ correspond to flow elements.

Operator vertex K” collect the data from nine pixels

and therefore it is connected via vectors-edges

Dk = Kk’ – K” with the flow vertices, which mark the

aperture’s pixels.

Balanced spatial SDF of the buffer functioning

algorithm, which is prepared with the method, is

presented on Fig.6. Here the delay vertices, which

are mapped into two rows buffers, highlighted by

rectangles. The rest of the delay vertices are mapped

into the respective pipeline registers. The resulting

structure is matching the structure shown in Fig.1. If

necessary, the N = 8 parameter can be replaced with

any number, as well as the aperture size.

Therefore, the proposed method allows

formalized construction of buffer circuits for image

processing. In this example, the processing block

executing the function f(x(k)) receives input data in

one clock cycle. If necessary, the method can

provide data presentation in arbitrary cycles, for

example, when thinning data during image

decimation.

This method was applied during the

development of an intelligent video camera that

processes images with a wide dynamic range [27].

At the same time, the method made it possible to

abandon the use of external memory for saving

image frames, to ensure the development of image

processing pipeline blocks with an arbitrary order of

incoming data from buffer memory blocks.

Simulation and hardware implementation

results

According to the simulation results of the

method of designing buffer circuits, an experimental

sample of the technical vision system for receiving

the video stream from the HDR sensor, processing it

and outputting it to the display via the HDMI

interface is simulated. The model is implemented in

a prototype built based on the Helion-60 board of the

Helionvision company, on which the Lattice ECP-3

LFE3-70EA FPGA is installed.

Fig. 5. Display of the frame in the spatial SDF of the buffer
Source: compiled by the authors

xi,j

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7

 xk = xi,j

f(x(k))

K’k

DkR

K”R
t 0

s

k = … 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29…

         

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

236 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Fig. 6. Balanced spatial SDF of buffer

 Source: compiled by the authors

The component modules of the system and their

parameters are given in Table 1.

The DECOMP block decompresses the input

12-bit video stream to 20 bits.

The GIST block calculates the distribution of

pixels by brightness and outputs to the NORM1

block the parameters that are necessary for image

normalization. The COL_FILTR5 block performs

reverse color filtering (debayerization), i.e., restores

image colors using interpolation.

The MEDIANF_3X3 filter performs median

filtering of the image, improving the signal-to-noise

ratio. The BW block extracts the brightness

component from the video signal. The

HDR_FILTR53 block, thanks to adaptive filtering,

compresses the dynamic range of the video signal

from 18 to 8 bits for the brightness component. The

COLOR_REST block restores the colors for the

compressed image.

Table 1. Component modules of the technical vision system

Module name Purpose Q-ty

LUT

Q-ty

Triggers

Q-ty

Adders

Q-ty

Mem.

blocks

Max clock

frequency,

MHz

Latency

DECOMP HDR-video

decompressor

46 60 - - 280 3

GIST Histogram building 892 59 - - 139 N∙m

COL_FILTR5 Debayerization 279 779 4 169 2N + 6

MEDIANF_3X3 Median filter 9689 3906 - 6 61 N + 3

BW Convert to black and

white image

22 10 - - 270 1

HDR_FILTR53 HDR-compressor 8400 3313 37 4 41 2N + 16

COLOR_REST Color restoring 156 490 3 - 28 1

NORM1 Normalization block 76 60 1 - 164 1
Source: compiled by the authors

t 0

s

K”

Row buffer1

f(x(k))

Row buffer2

k = … 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29…

         

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and systems analysis 237

After compiling the technical vision system

project, the results are shown in Table 2. Analysis

of the design results of memory blocks showed

that their required number is quite small.

Table 2. Project compiling results

FPGA elements Quantity Available %

Configurable

logic blocks

(CLB slices)

8563 33264 25.7

Triggers 5694 66528 8.6

Multiplexors

18х18

34 128 26.6

Memory blocks

1024х18

56 240 23.3

Source: compiled by the authors

CONCLUSIONS

A review of the ways in which image data

can be put into the FPGA for processing has

shown that the best data storage strategy is one

that involves storing as much of the data as

possible in the FPGA's buffer memory blocks.

Therefore, the development of methods for

organizing such buffers is demanded. The

proposed method of synthesis of blocks of buffer

memory is based on the method of mapping

spatial SDF into computing resources. At the

same time, buffer memory registers are used as

resources. The new method consists in converting

a two-dimensional representation of an image into

a one-dimensional one, constructing a spatial SDF

and describing it in a hardware description

language such as VHDL. In contrast to known

methods of designing buffer circuits, the method

makes it possible to carry out their development

in a formalized manner with the minimization of

hardware costs, directing the synthesis to obtain

buffers of the FIFO type or random access

memory or register memory, ensuring a

predetermined order of data input and output. The

level of formalization of the method makes it

possible to implement it in automated design

systems.

REFERENCES

1. Wang, J., Zhong, S., Yan, L. & Cao, Z. “An embedded system-on-chip architecture for real-time

visual detection and matching”. IEEE Trans. Circuits Syst. Video Technol. 2014; 24: 525–538.

DOI: https://doi.org/10.1109/TCSVT.2013.2280040.

2. Mondal, P., Biswal, P.K. & Banerjee, S. “FPGA based accelerated 3D affine transform for real-time

image processing applications”. Computers & Electrical Engineering. 2016; 49: 69–83.

DOI: https://doi.org/10.1016/j.compeleceng.2015.04.017.

3. Perri, S., Frustaci, F., Spagnolo, F. & Corsonello, P. “Design of real-time FPGA-based embedded

system for stereo vision”. In Proceedings of the 2018 IEEE International Symposium on Circuits and

Systems (ISCAS). Florence: Italy. 2018. p. 1–5. DOI: https://doi.org/10.1109/ISCAS.2018.8351886.

4. Conti, F., Rossi, D., Pullini, A., Loi, I. & Benini, L. “PULP: A ultra-low power parallel accelerator

for energy-efficient and flexible embedded vision”. Journal of Signal Processing Systems. 2016. p. 339–354.

DOI: https://doi.org/10.1007/s11265-015-1070-9.

5. Stevanovic, U., Caselle, M., Cecilia, A., Chilingaryan, S., Farago, T., Gasilov, S., Herth, A.,

Kopmann, A., Vogelgesang, M., Balzer, M., Baumbach, T. & Weber, M. A. “Control system and streaming

DAQ platform with image-based trigger for X-ray Imaging”. IEEE Transactions on Nuclear Science. 2015;

62: 911–918. DOI: https://doi.org/10.1109/TNS.2015.2425911.

6. Guo, C., Meguro, J., Kojima, Y. & Naito, T. “A multimodal ADAS system for unmarked urban

scenarios based on road context understanding”. IEEE Transactions on Intelligent Transportation Systems,

2015; 16: 1690–1704. DOI: https://doi.org/10.1109/TITS.2014.2368980.

7. Ma, Y., Cao, Y., Vrudhula, S. & Seo, J. S. “An automatic RTL compiler for high-throughput FPGA

implementation of diverse deep convolutional neural networks”. Proceedings of the 27th International

Conference on Field Programmable Logic and Applications (FPL). Ghent: Belgium. 2017. p. 1–8.

DOI: https://doi.org/10.23919/FPL.2017.8056824.

8. Dessouky, G., Klaiber, M.J., Bailey, D.G. & Simon, S. “Adaptive dynamic on-chip memory

management for FPGA-based reconfigurable architectures”. Proceedings of the 24th International

Conference on Field Programmable Logic and Applications (FPL). Munich: Germany. 2014. p. 1–8.

DOI: https://doi.org/10.1109/FPL.2014.6927471.

9. Kim, K. & Kumar, V. K. P. “Parallel memory systems for image processing”. IEEE Computer

Society Conference on Computer Vision and Pattern Recognition. San Diego: California, USA. 1989. p.

654–659. DOI: https://doi.org/10.1109/CVPR.1989.37915.

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

238 Software engineering and systems analysis ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

10. Khan, S., Bailey, D. & Sen Gupta, G. “Simulation of triple buffer scheme (comparison with double

buffering scheme)”. Proceedings of the 2nd International Conference on Computer and Electrical

Engineering (ICCEE 2009). Dubai: UAE. 2009; 2: 403–407. DOI: https://doi.org/10.1109/ICCEE.2009.226.

11. Churiwala, S. “Designing with Xilinx® FPGAs: Using Vivado”. Springerz. Switzerland. 2017.

DOI: https://doi.org/10.1007/978-3-319-42438-5.

12. Sedcole, P., Cheung, P. Y. K., Constantinides, G. A. & Luk, W. “Run-time integration of

reconfigurable video processing systems”. IEEE Transactions on VLSI Systems. 2007; 15 (9): 1003–1016.

DOI: https://doi.org/10.1109/TVLSI.2007.902203.

13. “ChipScope Pro 10.1 Software and Cores User Guide”. Vol. UG029, Xilinx Inc. – Available from:

https://docs.xilinx.com/v/u/en-US/chipscope_pro_sw_cores_10_1_ug029. – [Accessed: 07.09.2021].

14. Shi R., Wong J. S. J. & So, H. K. “High-throughput line buffer microarchitecture for arbitrary sized

streaming image processing”. J Imaging. 2019; 5(3): 34. DOI: https://doi.org/10.3390/jimaging5030034.

15. Bailey D. G. & Ambikumar A. S. “Border handling for 2D transposes filter structures on an FPGA”.

Journal of Imaging. 2018; 4(12): 138. DOI: https://doi.org/10.3390/jimaging4120138.

16. Ikarashi, Y. Ragan-Kelley, J. Fukusato, T. Kato, J. & Igarashi, T. “Guided optimization for image

processing pipelines”. IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).

2021. p. 1–5. DOI: https://doi.org/10.1109/VL/HCC51201.2021.9576341.

17. Özkan, M. A., Reiche, O., Hannig, F. & Teich, J. “FPGA-based accelerator design from a domain-

specific language”. Proceedings of the 26th International Conference on Field Programmable Logic and

Applications (FPL). Lausanne: Switzerland. 2016. p. 1–9. DOI: https://doi.org/10.1109/FPL.2016.7577357.

18. Lee, E. A. & Neuendorffer, S. “Concurrent models of computation for embedded software”. IEE

Proc.-Comput. Digit. Tech. March 2005; 152 (2): 239–250. DOI: https://doi.org/10.1049/ip-cdt:20045065.

19. Waidyasooriya, H. M. A., Haiyama, M. & Uchiyama, K. “Design of FPGA-based computing

systems with OpenCL”. Springer. 2018. DOI: https://doi.org/10.1007/978-3-319-68161-0.

20. Sergiyenko, A., Serhienko, A. & Simonenko, A. “A method for synchronous dataflow retiming”.

IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). 2017. p. 1015–1018.

DOI: https://doi.org/10.1109/UKRCON.2017.8100404.

21. Sergiyenko, A., Serhienko, A. & Romankevich, V. “Genetic programming of pipelined datapaths

for FPGA”. IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). 2020. p.

802–806. DOI: https://doi.org/10.1109/ELNANO50318.2020.9088773.

22. Maslennikow, O. & Sergiyenko, A. “Mapping DSP algorithms into FPGA”. International

Symposium on Parallel Computing in Electrical Engineering (PARELEC'06). 2006. p. 208–213.

DOI: https://doi.org/10.1109/PARELEC.2006.51.

23. Ruvald Pedersen M. & Madsen, J. “Optimal register allocation by augmented left-edge algorithm on

arbitrary control-flow structures”. NORCHIP 2012. 2012. p. 1–6. DOI: https://doi.org/10.1109/

NORCHP.2012.6403107.

24. Richardson, I. E. G. “H.264 and MPEG-4 video compression. Video coding for next-generation

multimedia”. Wiley. 2003. p. 281. DOI: https://doi.org/10.1002/0470869615.

25. Cong, J. & Wang, J. “PolySA: Polyhedral-based systolic array auto-compilation”. IEEE/ACM

International Conference on Computer-Aided Design (ICCAD). 2018. p. 1–8. DOI: https://doi.org/10.1145/

3240765.3240838.

26. Sergiyenko, A. & Simonenko, V. “The displaying of periodic algorithms into field programmable

gate arrays”. Electronic Modelling. 2007; 29 (2): 49–61.

27. Sergiyenko, A., Serhiienko, P. & Zorin, J. “High dynamic range video camera with elements of the

pattern recognition”. IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO).

2018. p. 435–438. DOI: https://doi.org/10.1109/ELNANO.2018.8477556.

Conflicts of Interest: the authors declare no conflict of interest

Received 22.08.2022

Received after revision 04.10.2022

Accepted 18.10.2022

http://aait.ccs.od.ua/index.php/journal/theme3

Sergiyenko A., Romankevich V., Serhiienko P. / Applied Aspects of Information Technology

 2022; Vol. 5 No.3: 228–239

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and systems analysis 239

DOI: https://doi.org/10.15276/aait.05.2022.16

УДК 004.383

Буферизація зображень при їх обробці у спеціалізованих процесорах
Сергієнко Анатолій Михайлович1)

ORCID: http://orcid.org/0000-0001-5965-1789; asergy@bigmir.net. Scopus Author ID: 27868137900

Романкевич Віталій Олексійович1)
ORCID: http://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058

Сергієнко Павло Анатолійович1)

ORCID: http://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

1) Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», пр. Перемоги,

37. Київ, 03056, Україна

АНОТАЦІЯ

У багатьох застосунках для цифрової обробки зображень, які реалізовані у програмованих логічних інтегральних
схемах, кадри зображення, що обробляються, зберігаються у зовнішній динамічній пам’яті. Продуктивність такого
застосунку залежить від швидкодії динамічної пам’яті та необхідної кількості звертань до неї під час виконання алгоритму.
Ця продуктивність оптимізується завдяки використанню буферної пам’яті, яка реалізована у програмованих логічних
інтегральних схемах. Але не існує загального методу, який би дав змогу формально синтезувати буферну пам’ять з
заданими пропускною здатністю, порядком слідування вхідних і вихідних даних та мінімізованими апаратними витратами.
В роботі розглядаються особливості вводу й обробки зображень у спеціалізованих процесорах на базі програмованих
логічних інтегральних схемах. Аналізуються методи побудови буферних схем у програмованих логічних інтегральних
схемах, завдяки яким зменшується інтенсивність обмінів даними з зовнішньою пам’яттю. Приводиться метод синтезу
конвеєрних схем з заданими характеристиками продуктивності та порядком слідування даних, який ґрунтується на
відображенні просторового графу синхронних потоків даних у структуру, що реалізована в програмованих логічних
інтегральних схемах. Запропонований метод проектування буферних схем, який заснований на відображенні просторового
графу синхронних потоків даних у локальну пам’ять у вигляді ланцюжків конвеєрних регістрів. Метод дає змогу
організувати потік вхідних даних на вхід вбудованих конвеєрних блоків обробки зображень, в якому дані слідують у
заданому порядку, а також мінімізувати об’єм буферної пам’яті. Метод забезпечує використання в програмованих логічних
інтегральних схемах вбудованих динамічно регульованих регістрових затримок, що підвищує ефективність буферизації.
Метод було перевірено при розробці інтелектуальної відеокамери, яка виконує алгоритм стиснення відеозображення з
широким динамічним діапазоном за алгоритмом Retinex і одночасно виділяє характерні точки у зображенні для подальшого
розпізнавання образів. При цьому виконується багатократна децимація кадра. Завдяки багатократній буферизації
зображення у програмованих логічних інтегральних схемах, вдалось уникнути застосування зовнішньої динамічної пам’яті.

Ключові слова: Програмовані логічні інтегральні схеми, граф синхронних потоків даних; обробка зображень;
буферна пам’ять

Copyright © Національний університет «Одеська політехніка», 2022. Всі права захищені

ABOUT THE AUTHORS

Anatolij M. Sergienko - Doctor of Engineering Sciences, Professor, Professor of Department of Computer Engineering.

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Av. Kyiv, 03056, Ukraine

ORCID: http://orcid.org/0000-0001-5965-1789; asergy@bigmir.net. Scopus Author ID: 27868137900
Research field: Computer architecture; hardware synthesis; digital signal processing

Сергієнко Анатолій Михайлович - доктор технічних наук, професор , професор кафедри обчислювальної техніки.
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», пр.

Перемоги, 37. Київ, 03056, Україна

Vitalij O. Romankevich - Doctor of Engineering Sciences, Professor, Professor of System Programming and Special
Computer System Department. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37,

Peremogy Av. Kyiv, 03056, Ukraine

ORCID: http://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058
Research field: Dependability of fault-tolerant multiprocessor control systems; self-testing of multiprocessor systems

Романкевич Віталій Олексійович  доктор технічних наук, професор, професор кафедри Cистемного

програмування та спеціальних комп’ютерних систем. Національний технічний університет України «Київський
політехнічний інститут імені Ігоря Сікорського», пр. Перемоги, 37. Київ, 03056, Україна

Pavlo A. Serhiienko - PhD student, Assistant of Department of System Programming and Specialized Computer Systems.

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Av. Kyiv, 03056, Ukraine
ORCID: http://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

Research field: Pattern recognition in images; embedded high-performance manycore systems in FPGA

Сергієнко Павло Анатолійович  аспірант, асистент кафедри Cистемного програмування та спеціальних

комп’ютерних систем. Національний технічний університет України «Київський політехнічний інститут імені Ігоря

Сікорського», пр. Перемоги, 37. Київ, 03056, Україна

http://aait.ccs.od.ua/index.php/journal/theme3
mailto:paulsrgnk002@gmail.com

