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ABSTRACT

The article proposes a new direction for the further development of GL-models — models on the basis of which performs the
calculation of the reliability parameters of fault-tolerant multiprocessor systems. Such models reflect the reaction of the system to the
appearance of failures of arbitrary multiplicity. The essence of the new direction is the construction of a model by composition of
several basic GL-models in such a way that the values of the edge functions of one model form the input vector of the next one. This
article shows that the model obtained in this way, which is proposed to be called cascade model, will also be basic and, in general
case, can consist of an arbitrary number of submodels. This article gives a formula that allows one to determine the value of the
degree of fault tolerance of the cascade model, depending on the values of the levels of fault tolerance of its component submodels.
This article shows that the graphs of both the cascade and regular models are cyclic and have the same number of edges. At the same
time, despite the fact that the intermediate submodels also have graphs, their presence does not increase the complexity of the model
as a whole, since only the expressions of the edge functions are used in them. This article contains examples that confirm the
correctness of the theoretically obtained results, and it also shows that the cascade model, at least in some cases, has lower
computational complexity (the total number of logical operations in the expressions of edge functions) compared to the basic model.
It was found that although the cascade model is basic, the sets of edges it loses and the regular basic GL-model on some input vectors
may differ. In certain cases, several alternative cascade models can be built, which will differ in their parameters, but will have the
same resulting value of the degree of fault tolerance. Given an example, where the properties of such alternative cascade models are
compared. It was found that such models differ both in computational complexity and, in some cases, in the sets of edges they lose on
certain input vectors. The possibility of modifying the cascade model was shown by changing the expressions of the edge functions
of its component submodels, both individually and several simultaneously. At the same time, it is possible to block vectors with an
increased multiplicity of zeros. A number of tasks for future research were formulated.
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INTRODUCTION the control system [3], because its failure can lead, at
best, the controlled object’s operation to a halt, and
sometimes to an accident.

This is especially important for so-called
critical application systems (CAS). [4,5], [6], the
refusal of which can lead to significant material
losses, threaten the life or health of people, the
security of the state, cause significant damage to the
environment, etc. (for example, power plants,
military equipment [7], space vehicles [8, 9],
complex production processes, aviation [10],
railway, and recently some types of personal
transport [11] etc.).

Both of the above-mentioned problems can be

In the modern world, constantly increasing
amounts of various devices and systems are
becoming automated or completely automatic [1].
Management of their operation is partially or
completely based on a special system, the so-called
control system (CS) [2]. It receives signals from
various sensors, processes them and generates
control signals according to a certain algorithm.

At the same time, in some cases, especially for
complex systems, the computational complexity of
the tasks performed by the CS can be very high. In
addition, an important property is the reliability of

© Romankevitch A, Morozov K., Mykytenko S. solved by using the so-called fault-tolerant
Kovalenko O.. 2022 ’ ' multiprocessor systems (FTMS) as CS [12, 13].
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Such systems often contain a large number of
processors and can continue full operation even if
some of them fail.

ANALYSIS OF THE LITERATURE DATA
AND STATEMENT OF THE PROBLEM

One of the tasks faced by the FTMS developer
is the assessment of its reliability parameters, for
example, such as the probability of failure-free
operation during the specified time. These values are
needed to evaluate the properties of the system at the
development stage, for example, in order to identify
its most vulnerable places, and to confirm its
compliance with the specified criteria at the
implementation stage [14]. There are two main
approaches to solving this problem [15, 16], [17,
18].

The first one is based on the construction of
analytical  expressions  that  accurately or
approximately allows the determination of system
reliability parameters [19, 20], [21, 22], [23, 24],
[25]. One of the disadvantages of this approach is its
limited application: each system usually requires the
development of its own approach and a set of
formulas [26, 27], [28, 29], [30, 31, [32].

The second approach boils down to determining
system reliability parameters by conducting
statistical experiments with models of system
behavior in the flow of failures [33, 34]. One of the
disadvantages of this approach is that the parameters
are determined only with a certain accuracy, which
usually depends on the number of experiments
conducted with the models. Thus, to increase the
accuracy of the estimate, it is desirable to increase
the number of experiments, which can be achieved,
in particular, by reducing the complexity of the
model.

PURPOSE AND OBJECTIVES OF THE
RESEARCH

As models of FTMS behavior in the flow of
failures can be used the so-called graph-logic models
(GL-models) [34, 35]. This approach is universal,
that is, it allows building a model for any system.

The basis of the GL-model is an undirected
graph, each edge of which corresponds to a boolean
edge function. The arguments of the edge functions
are the elements of the Boolean vector of the system
state, each element of which corresponds to a certain
processor of the system and takes the value 1 if this
processor is healthy, or 0 if it has failed.

If the edge function takes a zero value, the edge

corresponding to it is removed from the graph. The
connectivity of the model graph, in turn, corresponds
to the performance of the system. Thus, to evaluate
the behavior of the system in the flow of failures, it
is enough to calculate the values of all edge
functions of the model, and then determine the
connectivity of the resulting graph.

The authors suggest that the developer can use
controlled generators of pseudorandom vectors to
use them as input vectors for models. After that, by
using the methods of mathematical statistics, the
values of the probability of fault-free operation of
the system are being estimated with a certain
accuracy.

Among FTMS, it is worth noting those that are
resistant precisely to failures of a certain
multiplicity, that is, they remain operational until no
more than a certain number of any processors fail.
Such systems, as well as GL-models corresponding
to them, are called basic and denoted K(m, n), where
n is the number of processors in the system, and m is
the maximum allowable number of failures during
which the system will remain operational. All other
systems and their corresponding models are called
non-basic.

There are a number of different methods for
building GL-models [36-38], among them it is worth
noting [37]. Basic model K(m, n), constructed by
this method is based on a cyclic graph with n—
m+1 edge and loses exactly two edges on the
vectors with m + 1 zero. Using a cyclic graph allows
to make procedure of checking the connectivity of
the graph trivial.

The creation of methods for building new types
of GL-models, as well as modifications of existing
models, remain relevant, in particular, with the aim
of simplifying the process of building models,
reducing the computational complexity of the
models, building models of non-basic systems, etc.

CASCADE MODELS AND THEIR
PROPERTIES

GL-model K(m, n), built according to [37] in
the column will contain exactly N = n—m + 1 edges.
To construct the expressions of its edge functions,
the input vector is divided into 2 parts. In the general
case, such a division can be arbitrary, but in practice
it is advisable to divide it into two equal or almost
equal parts.

A set of the model edge functions K(m, n) built
in accordance with [37] will look like that:
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K, (m,n,)
K (m=-1n)vk,(1n,)
.Kl(m—Z,nl)v K,(2,n,)

(1)

'Kl(m—i,nl)vxz(i,nz)

K (2,n) vk, (m=-2n,)
(L) vk, (m=-1n,)
K,(m,n,)

where Ki(m, n1) and Kx(m, n2) — edge functions of
similar models constructed, if possible, for the
corresponding parts of the input vector, and x1(i, nz)
with x(j, n2) are conjunctions of expressions of
edge functions of the models Ki(i, n1) and Ka(j, no),
constructed for the corresponding parts of the input
vector.

Thus, the construction process is recursive and
ends with the construction of trivial models K(1, 1),
each of which contains exactly one edge function of
the type f =Xy, where X is a certain element of the
input vector.

In addition, in [39] it was proved that on any
vector with | zeros she will lose exactly L edges,
where

3 0, whenl<m
“l—=m+1 whenl>m’

)

Note: the loss of an edge by the GL-model
occurs due to the fact that the corresponding edge
function takes a zero value. Therefore, on vectors
with | zeros in the K(m, n) model, exactly L child
functions will take a value equal to zero. Let's
combine the values of the edge functions of this
model into a vector, denoted as v.

Let’s build model K’(M, N) in accordance with
[37], which as input accepts vector v. In accordance
with [39] on vectors with L zeros it losses exactly 1
edges, where:

{ 0, when L<M
A= . (3)
L-M+1 whenL>M

In accordance with (2) we have: L<M~
~l-m+1<M~I<M+m-1.

SimilarlyandL>M~1>M+m-1.

In addition,

L-M+1l=1-(M+m-1)+ 1

Thus, we can rewrite (3) as

0, whenl<M +m-1

Z{L—(M +m-1)+1 whenI=M+m-1"

Let's denotepu=M +m—1. In that case (4) will
take the form:
0, when I <p

1) A=
L-p+1 whenl>p’ ©®)
Let’s note that, as shown in [37] model
K’(M, N) will have exactly v edges, where

v=N-M+1=(n-m+1)-M +1=

=n—(M+m-1)+1=n-p+1 -©

Let's also consider the model A(x, n), built
according to [37]. It is easy to spot that it will also
have v edges, and on vectors with | zeros it will also
lose exactly A edges (in accordance with (5)). Thus,
properties of the models K’ and A in terms of the
number of edges, as well as the number of edges that
are lost on vectors with a certain multiplicity of
Zeros, coincide.

The procedure described above, namely, using
the values of the edge functions of one model as the
input vector of the next one, can be repeated an
arbitrary number of times. Thus, a model can be
obtained, which we will call a cascade model. Let’s
denote the value of the parameters of the degree of
fault tolerance of each of the models of the cascade
model as my, my, ..., mr, where T is the number of
those models. Let’s denote this model as
K([m1, my, ..., my], n). Number of T models in a
cascade model will be called its depth.

One can see that the resulting model will have
properties (in terms of the number of edges, as well
as the number of edges that are lost on vectors with a
certain multiplicity of zeros) similar to the properties
of the model A(u, n),

where
.
m=m-T+1 ()
i=1
EXAMPLE

For this example, let's build a model of a basic
multiprocessor system, which contains 8 processors
and is resistant to the failure of any 3 of them. A
model of such a system, built according to [37], let’s
denote it as K(3,8), will contain the next edge
functions:
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f, =X VX, VXX, . Y, =X VX,

f,=XX VXV X, Yo = XX vV X3Xy
= =X, V X
fy= (% VX ) (XX v XX, ) (X v X, ) v Ya =XV X,

V X X X, Xg Yo = XX X5X, vV X5 Xg X7 X -9)

. (8) Ve = X V X

f, =X XXX, v 5 sz eXX
= vV

V(X v Xg ) (XsXs v XX ) (X v Xg ) Yo = XX VXr %
Y7 =% VX

fo =X Vv Xg V X, X
Next, using the obtained values of the edge
functions as an input vector (y ,y, ...y, ), let us

Note that X1, Xz, ..., Xg here denote the elements  pyild model Kz(2, 7) in accordance with [37], that

of the input vector of the system state. will have the next edge functions:
This model will correspond to the cyclic graph

fo = XX vV X, v Xg

presented on Fig. 1. P=Y1VY,
h @, =Y1Y>, VY3V,
Ps=Y;VY,
Py =Y1Y2YsYa Vv ¥YsYe Y7 (10)
P =YsVYe
Ps =Ys¥Ys V' Y7

The resulting cascade model is presented on
Fig. 2.

Experimental data confirm the adequacy of
both models: both of them do not lose a single edge

fi

Fig. 1. Model K (3, 8) on vectors with less than two zeros, and on vectors

: compiled by the auth :
Source: compiled by the authors with more zeros they lose exactly | —2 edges each,

where | is number of zeros in the input vector.
However, it is worth noting that the
combinations of edges that each model loses on
some input vectors may differ. Thus, on vector
<10101100> model K(3,8) will lose edges,
corresponding to edge functions f; and f,. At the
same time, an intermediate model K;(2, 8) will lose
edges corresponding to edge functions y,, y4 and ys.
Accordingly, the model Kx(2, 7), and, therefore, the
model K’([2, 2], 8), will lose edges corresponding

m

Let’s also build a cascade model K’([2, 2], 8)
for this system. To do this, we will first build a
model Ki(2, 8) in accordance with [37], that will
have the next edge functions:

®s Ps

K(12,2],8)

Fig. 2. Cascade model K’([2, 2], 8)

Source: compiled by the authors
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to edge functions ¢, and ¢4 (Fig. 3a). On the other
side, on vector <11001100> the model K(3, 8) will
also lose edges, that correspond to edge functions f3
and fs. Intermediate model Ky(2, 8) in turn, it will
lose the edges corresponding to the edge functions
Ya, Y4 and y;. And the model K3(2,7) and,
accordingly, the model K’([2, 2], 8), will lose edges
that correspond to edge functions @3 and ¢4
(Fig. 3b). This means that for the considered
example, the same behavior of the models in terms
of sets of edges that are lost on different input
vectors cannot be achieved by permuting these
edges.

A K(3.8) f
. FIRCICIFEY
(AJoTfo1[x[olo) _ N X
K,(2.8) hlohlohhlollﬁ%llo]Holllﬂ
K'([2,2],8)
6) K(3.8) f
- [A[iolo[1[T
[ATATolo[T2]0]0) _ N X
K.(28) \1|1|O|0\1{1|0|K2€%1|1J0\o|1|1\
K'([2,2],8)

Fig. 3. Behavior of the models K (3, 8) and
K’([2, 2], 8) on different input vectors:

Source: compiled by the authors

We also compare the complexity of the
considered models, namely the number of operations
that must be performed to calculate their edge
functions.

So, the expressions of the edge functions of the
model K(3,8) contain 16 disjunctions and 18
conjunctions. Expressions of edge functions of the
model Ki(2,8) contain 7 disjunctions and 10
conjunctions, and expressions of edge functions of
the model K3(2,7) contain 6 disjunctions and 8
conjunctions. Thus, in general, to calculate the edge
functions of the cascade model K’ ([2, 2], 8) it is
necessary to perform 13 disjunctions and 18
conjunctions, which is 3 operations less compared to
the usual model.

The numbers of logical operations used in the edge
functions of each of the models are given in Table 1.

It is also worth noting that the graphs of both
models are the same — in both cases they are cyclic
graphs with 6 vertices. In this case, the graph of the
intermediate model can be ignored, since it is not
actually used, and only the expressions of edge
functions are taken from it.

Table 1. The number of logical operations in the
models from Example 1

Model The The Number
number of | number of of

conjunction | disjunctio | operation
S ns S
K(3,8) 18 16 34
Ki(2,8) 10 7 17
K2(2,7) 8 6 14
K’([2,2],8) 18 13 31

Source: compiled by the authors

VARIABILITY OF CASCADE MODELS

It is worth noting that the model K(1, n), built
in accordance with [37] will have trivial expressions
of edge functions of the form fj=x. Thus, the
submodels of the cascade model with values m; =1
are trivial and can simply be removed from it
without changing its behavior. Therefore, when
analyzing cascading GL-models, it makes sense to
consider only those of them that have values m; of
each of the submodels is at least 2.

In accordance with (7), it is easy to notice that
only for case u = 3 (as in above-mentioned example)
it is possible to build only one version of the cascade
model, which will consist of two sub-models, in
which m; =m; = 2. Otherwise if x is bigger, a few
different variants of such a model can be built. At
the same time, their behavior and complexity may
also differ among themselves.

For example, consider a system that contains 10
processors and is resistant to the failure of no more
than 4 of them. For such a system will correspond
GL-model K(4, 10). In accordance with [37] such a
model will have 7 edge functions:

=X VX, VXV X X

=XV %) (XX, vV X )V X, V X

fs :(X1VX2VX3)/\

AV %) (30X v X)) v XX ) A
A(X1X2X3 VXV XS)V Xe X7 XgX9X10
Fo=(X0v %) (XX v X5 ) (XX X5 Vv Xy X ) A
A%y VX5 )V (X v X5 ) (X6 Xy V Xg ) A
/\(X6X7X8 v XQX_LO)(XQ v Xlo)

fs = X XXX, X5 v (X v X, v Xg ) A

/\((X6 vX7)(X6X7 V Xs)V nglo)/\

A(XeXyXg V Xg V X))
fo =X V X5V Xg V XXy

(11)

£, =(Xs vV X ) (XX, V Xg )V Xg V Xyq
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Similarly to the previous example, X1, Xa, ...
denote the elements of the system state vector.

This model will correspond to the cyclic graph
presented on Fig. 4.

Fig. 4. Model K (4, 10)

Source: compiled by the authors

Note that a total of 39 disjunctions and 42
conjunctions are used in the child function
expressions of the built model, in other words, a
total of 81 logical operations.

It is possible to also build several different
cascade models, each of which will correspond to
the system under consideration, namely: K?
([2, 3], 10), K?([3, 2], 10), K3([2, 2, 2], 10).

Let’s build model K%([2, 3], 10). To do this,
let’s first build a model Kll(2,10)1 that in accor-

dance with [37] will have the next edge functions:

» X10

1
Y =X VX,
1
Yo = XX VX
1
Ya = XXXV X Xg
1
Ya=X, VX
1 _
Y5 = X Ko XX, X5 v X X7 Xg Xg Xy
1 (12)
Yo =X VX

1
Y7 = X% vV X
1
Yg = X5 X7 X5 V XXy
1
Yo =XV Xy
After that, using the obtained values of edge
functions as an input vector <y11,y§,...,y;> , let’s

build model K;(g,g). In accordance with [37] it

will have the next edge functions:

PL=YiVYVYs
25 =(Vivys)(Vivs v ¥5) v vive

1:,1,,1

O =YiYoYsV ViV Ve

2i =i v ys)(yivs v y5)(Yiyays v vave ) A
VAR AN B EBE

(13)

1,,1,,1,,1,,1

25 = ViYsYaYaYe v (Ve v ¥ ) A
AYaYs v vays ) (s v ¥s)

@5 =Ys VY1V YaYs

1

07 =YeY7V Vs V Vg

The resulting cascade model is shown on Fig. 5.

Fig. 5. Cascade model K!([2, 3], 10)

Source: compiled by the authors

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity 261


http://aait.ccs.od.ua/index.php/journal/theme4

Romankevitch A., Morozov K., Mykytenko S., Kovalenko O. / Applied Aspects of Information Technology

2022; Vol.5 No.3: 256-271

Let's count the number of logical operations
used in the edge functions of this model. Edge
functions of the models Kll(2,10) contain 9

disjunction and 16 conjunctions, thus, a total of 25
logical operations. At the same time, edge functions
of the model K;(gyg) include 20 disjunctions and

25 conjunctions, in other words 45 logical
operations. Thus, in edge functions of the model
KY([2, 3], 10) there are 29 disjunctions and 41
conjunctions, in other words 70 logical operations.
Now, let’s build a cascade model K*([3, 2], 10).
As a first step let’s build model K12(3,10)1 that in

accordance with [37] will have next edge functions:
VP =XV X VX,
Yy = (X V%, ) (X%, Vv X3 ) V X, X
Y2 = XXX, VX, VX
Vi = (X VX ) (XX Vv X3 ) (XXX V X, X5 ) A
A(Xy V X5 )V X6 X7 XgXg Xy
Y5 = XXX, X V (X V X, ) (XeXg v Xg ) A
A(XsX: X5 V XgXi0 ) (X V Xy0)
Ve =X VX,V Xy
Y7 = (X VX ) (XgX; v Xg )V XoXeg

2
Yg = XeX7Xg V Xg V X

(14)

As the next step, in accordance with [37] let’s
build model K;(z,g), while using as input vectors

received on the previous step values of the edge
functions <y12, V..., y§> Let’s note that expressions

of edge functions of the model that's being built,

with precision to renaming of input and output
variables will correspond to expressions (9).
The resulting expressions will take form of:

PL=Yi VY,
@7 = Y2yi v yiy:
Pl =yivy:

Pi =YiY3Y3Ya v Ve Ve YsYa da
P =Yiv Y

Pe=YeVe V' YiYs

pl=y:vy;

The build cascade model is presented on Fig. 6.
Let’s also count the number of logical
operations used in the expressions of edge functions
of the model. Edge functions of the model K 2 (3,10)

contain 24 disjunctions and 32 conjunctions, in other
words, a total of 56 logical operations. Edge
functions of the model Kzz(z,g) include 7

disjunctions and 10 conjunctions, in other words, a
total of 17 logical operations. Thus, edge functions
of the model K?([3, 2], 10) contain 31 disjunctions
and 42 conjunctions, in other words, 73 logical
operations.

As a final step, let’s build model
K3([2, 2, 2], 10). For this at first we build model
K’ (2,10)-

In accordance with [37] it will contain edge
functions, expressions of which, as one can notice,
will correspond to (12), namely:

@

Fig. 6. Cascade model K?([3, 2], 10)

Source: compiled by the authors
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3
Y1 =X VX
3

Yo = XX VX

3
Y3 = X XX5 VX, Xg

yj =XV X

Vo = XX XX, Xs VX Xo X Xo X, (16)
yg =X VX

Y7 = XX, V Xg

Yo = Xs X, Xg V XXy

yg =%y V Xy

Next let’s build model K§(2,9)1 for which let’s

formulate input vector from received on the previous
step values of edge functions <yfy§’y93> In

accordance with [37]:
=Y vy,
=YY,V Y5
Z3=Y;Y5Y5 V YaYs
Zi=Y;vys
22 =Yy Y;YaYaYa V YeYiYaYe
Z3 =YV s
Z3 = YoYs Vv YaYs
Z3=YsVYs

Finally, let’s build

17

model K33(2,8) , input
vector for which is formulated from values of edge

22

functions of the previous model, in other words

<Zl3,Z§,...,Z§>' Let’s formulate expressions of edge

functions of this model in accordance with [37]. One
can notice that they correspond to expressions (15)
with precision to change the names of the input
variables. Namely:

3 .3 _3
O =14 Vi
3 _3.3. _3.3
Y, =41,V L3,
3 3. .3
Q3 =13V,

3,3,3,3 3,3,3,53

3
0, =1,2,2,2, vV 1,2, 7, (18)

3 3 3
Y5 =15V L4
3 3,3 3,3
P = 1525 V 1714
3 3 3
p7 =14,V
The resulting cascade model is shown on Fig. 7.
Let’s calculate the number of logical
operations, used in expression of edge functions, and

for this model. Edge functions of the model
Kf(z,lo) have 9 disjunction and 16 conjunctions,

in other words, 25 logical operations. Edge functions
of the model Kg(g,g) have 8 disjunction and 13

conjunctions, in other words, a total of 21 logical
operations. Edge functions of the model K§(2,8)

includes 7 disjunction and 10 conjunctions, in other
words, a total of 17 logical operations. Thus, edge
functions of the model K3([2,2,2],10) have 24
disjunctions and 39 conjunctions, in other words, 63
logical operations.

K3([2, 2,2],10)

Fig. 7. Cascade model K?([3, 2], 10)

Source: compiled by the authors
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Number of logical operations that are being
used in edge functions of each model is shown in the
Table 2.

Similarly to the previous example, the graphs of
all models are the same — in all cases they are cyclic
graphs with 7 nodes. Graphs of intermediate models
and their number can be ignored, since, as
mentioned before, they are not actually used, and
only the expressions of their edge functions are
taken from them.

From Tablel and Table2 one can see that
cascade models in all of the considered cases
required the use of a smaller number of logical
operations compared to conventional basic models.
Whether this is true for all cases requires further
research. It can also be noticed that in some cases
the cascade model contains a smaller number of both
disjunctions and conjunctions compared to the usual
one, and in others only the number of disjunctions is
smaller, and the number of conjunctions remains the
same. The study of this fact can also become the
topic of future works. Further work may concern the
search for parameters of the optimal partition of the
cascade of the model, in other words, parameter
values m;, which make it possible to obtain a model
that allows the use of the smallest number of logical
operations.

Table 2. Number of logical operations in models
from Example 2

Model Number Number Number
of of of

conjuncti | disjunctio | operation
ons ns s
K(4,10) 42 39 81
Ki(2,10) 16 9 25
K3(3,9) 25 20 45
K%([2,3],10) 41 29 70
K{(3,10) 32 24 56
K;(2,8) 10 7 17
K%([3,2],10) 42 31 73
K (2,10) 16 9 25
K;(2,9) 13 8 21
K;(2.8) 10 7 17
K3([2,2,2],10) 39 24 63

Source: compiled by the authors

Experimental data confirms the adequacy of all
four models from Example 2: all of them do not lose
a single edge on vectors with less than three zeros
and on vectors with more zeros they lose exactly

| - 3 edges, where | is number of zeros in the input
vector.

However, as in the previous example, the
combinations of edges that each model loses on
some input vectors may differ.

Thus, on vector <1001011100> model K(4, 10)
loses edges, that correspond to edge functions f; and fs.
At the same time, intermediate model Kll(2,10) will

lose edges, that correspond to edge functions AR
v and Ve Therefore, model K;(3,9), and, thus, and

model K}([2, 3], 10), will lose edges, that correspond to
edge functions ¢! and ¢} (Fig. 8a). On the other hand,

on vector <1100011100> model K(4, 10) will also lose
edges, that correspond to edge functions f; and f.. At
the same time, intermediate model Kll(2,10) will lose

edges, that correspond to edge functions y!, y!, y!
and y?, thus model K;(3,9) and, therefore, model

KY([2, 3], 10), will lose edges, that correspond to
functions ¢! and ¢! (Fig. 8b).

On vector <1110001001> model K(4, 10) will
lose edges, that correspond to edge functions f, and
fs. At the same time, intermediate model K (3,10)

will lose edges, that correspond to edge functions
y2, y2 and y2. Models K2(2,8) and K*([3, 2], 10)

will lose edges, that correspond to edge functions
and 0 (Fig. 9a). However, on  vector

<1011000011> model K(4, 10) will also lose edges,
that correspond to edge functions f; and fs. On the
other hand, intermediate model Kf(3,10) will lose

edges, that correspond to edge functions y2, y? and
y. - Meanwhile model K;(z,g) and model

K%([3, 2], 10) will lose edges, that correspond to
edge functions 2 and ¢ (Fig. 9b).

A) K(4,10) fi
Xi [1[1]ofof1]1]1]

[1]ofo[1]o[a]]1]o]0] < vi @l
, [1ofo[afo[1]1]1]o]——[1]o[1]o[1]1]1]

K1(2,10) K3 (3.9)
Kl([z',sL 10)

B) K(4,10) fi
[2]2Tofo[]1]1]

1

Xi
[1]1]oloJo]1]1[1]o]0] . v} !
[1[1]ofofo[1]1]1]o]—[1]1]0f0]1]1]1]
K3(3,9)

K{(2,10)
K'([2,3],10)

Fig. 8. Behaviour of the models K(4, 10) and
KY([2, 3], 10) for different input vectors:
a—K(4, 10); b-KY[2, 3], 10)

Source: compiled by the authors
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A) K(4,10) fi
i [A]1[aTolola]1]
\1|111IOI0[0|1I0l0[1|\ vi ?
) [1[a]1folol1[ol1]——[a1]1]0[1]0[1]
Ki(3,10) K3(2,8)
K2([3,2),10)
B) K(4,10) fi
x; [a]1]aTolo]a]1]
\1|0J1I110{0|0|01m|\ vt o}
) [1[a]1foofo[a]1]——[a]1]1]0[0[1]1]
Ki(3.10) K3(2,8)
K2([3, é], 10)

Fig. 9. Behaviour of the models K(4, 10) and
K%([3, 2], 10) on different input vectors:
a—K(4,10); b-K¥[3,2], 10)

Source: compiled by the authors

Similarly, on the vector <1110000101> model
K(4, 10) will also lose the edges corresponding to
the edge functions fs and fs. Meanwhile intermediate
model Kf(2,10) will lose edges, that correspond to

edge functions vioyi e and v while model
K23(2,9) will lose edges, that correspond to the
functions z, 2 and z. Therefore, model K;(g,g)

and K3([2, 2, 2], 10) will lose edges, that correspond
to edge functions ¢} and ¢} (Fig. 10a). Yet for input

vector <1010100011> model K(4, 10) will also lose
edges, that correspond to edge functions f; and fs.
Meanwhile intermediate model Kf(2,10) on that

vector will lose edges, that correspond to functions
y;» yo» ys and y2. Model K2 (2,9) accordingly will

lose edges, that correspond to functions 22, z3 and
z3. Meanwhile model KZ(2,8) and K3([2, 2, 2], 10)

will lose edges, that correspond to edge functions ¢
and ¢} (Fig. 10b).

Similarly to the previous example, the same
behavior of models in terms of sets of edges that are
lost on different input vectors cannot be achieved by
permuting these edges.

Let’s also analyze the behavior of cascade
models K!, K? and K2 on different input vectors. On
vector  <1111010000>  intermediate  model
Kf’(2,10) will lose edges, that correspond to

functions y;, yi, y; and y;. In turn, model
K(3,9) and K ([2, 3], 10) will lose edges, that
correspond to edge functions ¢! and . On the
other hand, intermediate model Kf(S,lO) will lose
edges, that correspond to edge functions yZ, y? and
y2, meanwhile model KZ2(2,8) and KZ([3, 2], 10)
will lose edges, that correspond to edge functions ¢
and ¢? (Fig.11a). Yet on vector <1111100000>
intermediate model Kf(g,lo) will lose edges, that
correspond to functions yeo oyl oyt and Yo
Accordingly, model K:(3,9) and K([2, 3], 10)
will lose edges, that correspond to edge functions ¢}
and @’ - On the same vector, intermediate model
Kf(3,10) will lose edges, that correspond to edge
functions ye o2 and Y2 Accordingly, model
KZ(2,8) and K2 ([3,2],10), similarly to the

previous example, will lose edges, that correspond to
edge functions 2 and ¢? (Fig. 11b).

A) K(4,10) fi
X [1]1]1]oJo[1]1]
[1[xT1Tofofofolalo[1] T v z @i
, [1[1[1]oJoJola]o[1]——[1[a[1]o[o[1[0[1]—[1[1[1][0[1]0[1]
Ki(2,10) K3(2,9) K3(2.8)
L T |
K3([2,2,2],10)
B) K(4,10) fi
X [1]1]2]oJo[1]1]
{110|1|o\1lo|olo\1l1|\ ¥ z o}

Ki#(2,10

IlIl]DlllD[OIOIl[ll—*\1|1|0\1I0|0I1\1\—>|1[1]1l0i0\1lll
) K3(2,9) K3(2.8)

FAS 3 »

K3([2, é 2],10)

Fig. 10. Behaviour of the models K(4, 10) and K3([2, 2, 2], 10) on different input vectors:

a—K(4, 10);

b - K3([2, 2, 2], 10)

Source: compiled by the authors
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A) K'([2,3],10)
K!(2.10) v K3(3,9) o}
X /|111{1\1Jo|1|010m|—-|1[1\111l0l1l0|
[1]a]1]1]o]1]ofo]o]0] ~ yi of
[1T1]1T1To aTofo]———=[1]1]a]1]1]0]0]
_Kf (3,10) Kf(2.8)
K?([3,2],10)
B) K1([2,3],10)
K1(2,10) vl K3(3,9) o}
X; /Illl\1\1\1l0|0|0m|—-|1{1\1\111|0|0|
(1]a]1]1]1]ofofo]o]0] @?
\I1I1|1I1\1\010|0|—~|1h\1\1l1|0|0\
K (3,1 KF(28)
K‘([S.Z],ID)

Fig. 11. Behaviour of the models K*([2, 3], 10) and
K%([3, 2], 10) on different input vectors:

Source: compiled by the authors

On vector <1110010001> intermediate model
K3(2 10) will lose edges, that correspond to edge

functions Vi vyt and ye - Therefore, model
K:(3,9) and, thus, model K*([2, 3], 10) will lose
edges, that correspond to edge functions ¢} and ¢ .
On the other hand, intermediate model Kf(2,10) on

that vector will lose edges, that correspond to
functions 3, y?, y? and y?, meanwhile model

K23(2,9) will lose edges, that correspond to
functions .z and . Accordingly, model
KZ(2,8) and K3([2, 2, 2], 10) will lose edges, that

correspond to edge functions ¢} and ¢} (Fig. 12a).

However, on vector <1010100011> intermediate
model K3(2 10) will lose edges, that correspond to

edge functions AR AR and yh- Therefore, model
K2(3,9) and thus model K([2, 3], 10), similarly to

the previous example, will lose edges, that
correspond to edge functions ¢, and ¢} . At the same

time, intermediate model Kf(z,lo) on that vector
will lose edges, that correspond to functions y2, v,
y: and y2, model K;(gyg) will lose edges, that
correspond to functions 22, 2 and z3, meanwhile
model K;(z,g) and K3([2, 2, 2], 10) will lose edges,
that correspond to edge functions ¢} and ¢}

(Fig. 12b).

Note that for the considered pairs of cascade
models, the same behavior in terms of sets of edges
lost on different input vectors cannot be achieved by
permuting these edges either.

At the same time, experimental data shows that
the model K?([3, 2], 10) and K3([2, 2, 2], 10) behave
identically on each of the input vectors, in other
words, ¢’ =g

The formation of criteria that will allow determining
in which cases the behavior of models
(classical/cascade or several different cascades) will
be identical, and in which will differ, for which
edges and on which input vectors, also requires
further research.

A) K'([2,3],10)
r 1 7
K}(2,10) v K3(3.9) i
X IIIEEIEEI [1]1]1]ofo1]1]
I1\1\1\0I0|1|0|0|0|1I\ 3 z @}
I1|1|1I0(0\1\0I0l1|—-|1|1I1(0\0\1I0\1I—>I1I1I1IOI1(0\11
1{,( z( K3 (2.8)
K3([2,2,2],10)
B) K*([2,3],10)
r A ]
K1(2,10) yi K3(3,9) i
X IIEIEEEIII [1[1]1]ofo]1]1]
[1o]1]o[1]o]ofo]1]1] i z 3
\ i ("2

|1|1|0|1\0\0\0|1|1|—2‘|1|1|0\1\0\0|1\1|?’|1|1|1|0|0\1\1J

Kj(2,10

é(l 3

K3([2, 2, 2],10)

Fig. 12. Behaviour of the models K*([2, 3], 10) and K3([2, 2, 2], 10) on different input vectors:

a-KY([2, 3], 10);

b-

K3([2, 2, 2], 10)

Source: compiled by the authors
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MODIFICATION OF THE CASCADE
MODELS

Let us note that submodels of the cascade
model can be modified, in particular, by the methods
described in [40]. It is expected that as a result of
such a modification, some non-basic GL-model will
be obtained, the behavior of which will differ from
the original one on some set of so-called blocked
input vectors. That is, on these vectors, the modified
model shows the operational state of the system,
unlike the original model.

As a result of modification of the basic model
K(m, n), in the way proposed in [40], the set of
blocked vectors will contain vectors exactly with
m+ 1 zeroes. Using as an example the cascade
model K’([2, 2], 8), considered above, let’s examine
the effect of some cases of modification of its
component submodels in the manner described in
[40] on a set of blocked vectors.

Thus, one of the variants of such a modification
may consist of replacing the expression of the edge
function y, of the model Ki(2,8) in (9) with
expression:

Yo = (V% ) (XX V XX, ) (X3 v Xy )V

19
VX5 X Xy Xg 19)

As a result, 16 vectors with 4 zeros will be

blocked: B:1 = {<01110001>, <01110010>,
<01110100>, <01111000>, <10110001>,
<10110010>, <10110100>, <10111000>,
<11010001>, <11010010>, <11010100>,
<11011000>, <11100001>, <11100010>,

<11100100>, <11101000>}.

Another option for modification may be to
change the expression of the function ¢. of the
model K»(2, 7) in (10) with expression:

2o = (Vv Yo ) (VYo v YaYe ) (Y V Vi) v -

(20)
\230%

As a result of this modification, exactly the
same vectors will be blocked as in the previous case.

We can also perform both of the above-
mentioned modifications of submodels at once
Ki(2, 8) and Kx(2, 7). The set of blocked vectors will
be the same as in the previous cases, in other words,
B:.

If the modification consists of changing the
expression of the function y, of the model K(2, 8) in
(9) with expression:

Yo =X VX, V XXy, (21)

the set of blocked vectors will contain 32 vectors
with 4 zeros: B,={<01000111>, <01001011>,

<01001101>, <01001110>, <01010011>,
<01010101>, <01010110>, <01011001>,
<01011010>, <01011100>, <01100011>,
<01100101>, <01100110>, <01101001>,
<01101010>, <01101100>, <10000111>,
<10001011>, <10001101>, <10001110>,
<10010011>, <10010101>, <10010110>,
<10011001>, <10011010>, <10011100>,
<10100011>, <10100101>, <10100110>,

<10101001>, <10101010>, <10101100>}, which is
obviously different from set Bs, obtained as a result
of previous modifications.

By adding to this modification a modification
of the model Kx(2, 7), considered above, we will get
a set of blocked vectors, which will include 48
vectors with 4 zeros blocked by applying each of
them separately, in other words, B; U B,. However,
16 more vectors with an increased multiplicity of
zeros, in this case with 5 zeros, will also be blocked:

{<01010001>, <01010010>, <01010100>,
<01011000>, <01100001>, <01100010>,
<01100100>, <01101000>, <10010001>,
<10010010>, <10010100>, <10011000>,
<10100001>, <10100010>, <10100100>,
<10101000>}.

An assessment of exactly what the set of
blocked vectors will be in the case of modification
of certain submodels of the cascade model, as well
as whether it will include vectors with an increased
multiplicity of zeros, requires additional research.

CONCLUSIONS

The article discusses a new direction of
GL-model development, which is distinguished by
the formation of one model through the cascading
application of several basic GL-models. It shows
that the model obtained in this way, which is
proposed to be called cascade, will also be basic and
will have properties similar to those of the usual
basic GL-model, namely: the total number of edges
and the number of edges it loses on vectors of a
certain multiplicity. Preservation of the above-
mentioned properties allows building a cascade
model of arbitrary depth.

Was given examples and performed comparison
of conventional and cascade GL-models. Was shown
that despite the conservation of properties, the
specific sets of edges lost by each of the models on
certain state vectors of the system may differ. In
addition, a comparison of the number of logical
operations required to calculate the edge functions of
each of the models was performed. Was shown that,
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at least in some cases, the use of cascade models
reduces the time of performing one statistical
experiment with the model, which leads to an
increase in the accuracy of the system reliability
calculation.

Based on the obtained experimental data, a
number of questions for future research were
formulated. Namely: does the calculation of edge
functions cascade model always require the
execution of a smaller number of logical operations
compared to the classical model; in which cases it is
possible to achieve a reduction in the number of both
conjunctions and disjunctions, and in which - only

disjunctions; what are the optimal cascade model
parameters; in which cases the behavior of the
models in terms of the set of lost edges on different
vectors is identical, and in which cases it differs, for
exactly which edges, on which input vectors, etc.

It was also shown that the cascade model can be
modified by changing its component sub-models,
both individually and several at the same time. At
the same time, vectors with an increased multiplicity
of zeros can also be blocked. Evaluation of the set of
vectors blocked as a result of cascade model
modification requires additional research.
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AHOTALIA

B crarti mpomoHyeThCS HOBHI HampsMOK mojaibuioro po3Butky GL-mozmeneit — mopneneil, Ha 0a3i SIKUX BHKOHYETBCS
PO3paxyHOK HaJiMHICHUX MapaMeTPiB BiIMOBOCTIHKHX OaraTOmpoIeCOPHHX CHCTEM. Taki MOJIeNi BiII3epKaTIOITh PEaKIliio
CHCTeMH Ha TOsBY BiIMOB A0BiUIbHOI KpaTHOCTi. CyTh HOBOIO HampsiMKy — MoOyJoBa MOJENi MUIIXOM KOMIIO3HLIl AEKIIBKOX
6azoBux GL-monenell TakuM YHHOM, IO, 3HaYeHHS peOepHMX (QYHKLiH oxHiei Moxmeni (OpPMYIOThH BXiTHHH BEKTOp HACTYITHOI.
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INoka3zano, o0 OTpUMaHa TaKUM YMHOM MOJIENIb, SIKYy 3allPOIIOHOBAHO HA3MBATH KacKaJHOIO, TAKOX Oyne 0a30BOIO Ta B 3aralbHOMY
BUNAJKy MOKE CKIIaJaTHUCS i3 JOBUIBHOI KiJIBKOCTI miamoneneil. HaBeneHo ¢opMyiy, o 103BOJISI€ BH3HAYATH 3HAYCHHS CTYICHS
BiJIMOBOCTIHKOCTI KacKaJHOI MOJIEIIi, B 3aJICKHOCTI BiJl 3HAYECHB PIiBHIB BiIMOBOCTIMKOCTI 11 ckiafgoBux migmoeneii. [lokasaHo, mo
rpadu sk KacKaJHOI, TaK i 3BUYaiHOI MoJiesell € UKIIIYHUMH Ta MalOTh OJJHAKOBY KUTBKICT pebep. IIpu 1iboMy, He 3Bakalouu Ha Te,
o0 MPOMDKHI MiIMOAETl TaKoX MaioTh Tpadu, iX HasgBHICTP HE MiABUIIYE CKIATHOCTI MOAET B IIOMY, OCKUIBKA B HHX
BUKOPUCTOBYIOTBCS JIMIIE BHpa3w pebepHuX ¢yHKOid. Ha mnpukimagax miaTBepHKEHO KOPEKTHICTh TEOPETHYHO OTPUMAaHHX
pe3yabTaTiB, a TaKOX MOKAa3aHO, IO KacKaJHa MOJENb, MPUHANMHI, B JEAKHX BHIAJKaX Mae€ MEHIIY PO3PAaXyHKOBY CKIJIaJHICTH
(3aranpHy KiTbKIiCTh JIOTIYHUX OIeEpallii y BUpa3ax peOepHUX (YHKILIH), B HOPIBHIHHI 31 3BHMYaliHOI0. BusiBieHo, 1m0, X0 KackagHa
Mozens € 0a30BOI0, MHOXHHH pebep, siKi BTpadae BOHA Ta 3BHYaiiHa 06a3oBa GL-Monens Ha NESKHX BXIIHHX BEKTOPAaX MOXXYThH
Bifpi3HATHCA. B meBHUX BHMaaKax Moxke OyTH MOOyIOBaHO AEKiJIbKa allbTEPHATUBHHUX KACKAJTHUX MOJENICH, 10 BiAPI3HATHMYTHCS
CBOIMH TapaMeTpamH, aje MaTHMYTh OJHAKOBE pe3yJbTyIOUe 3HAUCHHS CTYNEHs BiAMOBOCTiliKocTi. Ha mpukmani BHKOHaHO
MOPIBHSHHS BIACTUBOCTEH TaKMX AJbTCPHATUBHHUX KAacKaJHUX Mojeneil. BusBneno, mo Taki Mojeni BiApi3HAIOTBCA SAK 3a
PO3paxyHKOBOIO CKIAHICTIO, TaK i, B AESKUX BHIAJKaxX, 38 MHO)KHHAMH pedep, sKi BOHM BTPAvYalOTh Ha IIEBHAX BXiJHUX BEKTOpax.
IMokazaHo MOXIHBICTh MojM(iKkamii KackaaHOi MOJENi HULIXOM 3MiHH BHpPa3iB pebepHux (QYHKIiil 11 CKIagoBHX MmiAMOZeNeH, K
KOXKHOI OKpeMoO, TaK 1 JeKiTbKOX oaHo4acHO. [Ipu nboMy MOXKIMBHUM € OJIOKYBaHHS BEKTOPIB 13 MiJBHIIEHOIO KPAaTHICTIO HYIIIB.
ChopMynbpoBaHO psijT 33124 sl MAHOYTHIX JTOCHIKEHb.

Kurwuosi cioBa: xackagni GL-mozeni; BizMoBocTiliki GaraTonpouecopHi cucremu; Momudikauis GL-moneneit; pospaxyHok
rapaMeTpiB HaIiHHOCTI
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