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Afterword

The trend in the development of commercial nuclear power indicates
economic and technical attractiveness of the further application of light-water
non-boiling pressure vessel reactors and the expansion of the application of
such a technology for NPP power units. The expansion should be understood
as two aspects: the extension of the plant life of operating units or the
construction of new ones. One of the areas of commercialization is a
significant reduction in the cost of technologies for SNF reprocessing or
storing. The analysis has shown that even taking into consideration the variety
of such technologies, only long-term dry storage of spent nuclear fuel from
reactors of this class is common for fuel from different suppliers. This means
that the issues of safe and reliable dry storage of spent nuclear fuel will be in
the focus of attention of researchers for a long time.

The authors of the book are convinced proponents of the idea that there
is no alternative to the development of nuclear energy. Within the framework
of the book, the issue of how to develop nuclear power in the future was not
discussed; the attention was focused on the issues on which the development
of nuclear power depends, namely, the criteria for the safe operation of spent
nuclear fuel were discussed.

The modern world is very dynamic in all its manifestations, but this
dynamism is spasmodic; it is especially well manifested in the development
of nuclear power, including the developed technologies for dry storage of
fuel. The designers and manufacturers of this technology are changing, the
geography of the introduction of new technology samples is expanding, but
the basic technologies for removing energy from the irradiated fuel assembly
and ensuring the strength of the cladding during its storage remain the same.
Only the requirements for safety, reliability, and efficiency are constantly
being reinforced.

These requirements are applied not only to newly created and designed
technologies, but also to those dry storage facilities that are in operation.
Scientific research in the field of materials science, extension of knowledge
of the physics of processes associated with dry storage, new approaches

vii



viii Afterword

and methods for modeling processes occurring during long-term storage of
spent nuclear fuel, as well as improving information and measuring systems
and information processing facilities are the most important components of
ensuring safe and reliable SNF storage.

The potential for borrowing engineering ideas in the world practice
of designing dry storage facilities is minimized with each project and
has practically reached its limits. It is clear that the strategic search for
innovations in order to improve dry storage technologies should become an
important part of the complex task of innovation in nuclear energy. From the
point of view of unsolved problems in the field of dry storage of spent nuclear
fuel, the following direction presented in the book “Thermal and Reliability
Criteria for Nuclear Fuel Safety” can be distinguished: the authors showed
one of the possible ways of making a decision on the long-term storage of
spent nuclear fuel in a dry storage facility and the possibility of its subsequent
disposal.

On the basis on the material presented in the book, a number of the
following important conclusions can be drawn. First, compliance with the
strength criteria for making a decision on dry storage of spent nuclear fuel
guarantees the absence of cladding failure of the fuel element. Secondly, the
cladding can be destroyed due to the violation of the removal of residual
energy release through it. Both in the first and the second cases, the ongoing
processes depend on the properties of the cladding material.



Preface

The authors of this book are united in their research activities by the desire
to ensure the European level of operational safety of nuclear power plants
(NPP) in Ukraine, namely in terms how to save the resource of operating
nuclear fuel and the possibility of making a decision on its long-term dry
storage, which will undoubtedly result in a significant reduction in the risks
of nuclear incidents and reputational losses at the final stages of the nuclear
fuel cycle.

It should be noted that for a long time the authors have been cooperating
with Studsvik, which is the moderator of a number of scientific and
technical works as part of the Studsvik Cladding Integrity Project (SCIP).
The cooperation is carried out on the basis of an international consortium,
that includes Ukraine, which is represented by a number of research
organizations. These are the results obtained in the framework of the SCIP-
III and SCIP-IV projects that stimulated the desire to formalize the existing
scientific groundwork on safety issues of the nuclear fuel for water-water
energetic reactors (WWER) at the final stages of the nuclear fuel cycle in the
form of a book. It is worth mentioning that it was the visual examination of
irradiated nuclear fuel in the Studsvik laboratories, which the authors had
the opportunity to observe; they influenced the final understanding of the
paradigm that is presented in this book.

The object-matter of the research in the book is the safety of nuclear
fuel for WWER-1000 reactors under normal operating conditions at the final
stages of the nuclear fuel cycle.

The subject-matter of the research is the processes of thermal physics
of nuclear fuel and the accumulation of failure to the cladding of nuclear
fuel, which determine the model of its safe operation in the WWER-1000
reactor and in open dry container storage facilities for spent nuclear fuel under
normal operation conditions.

First of all, the book is based on the scientific achievements of the
authors of the book, M. Maksymov, S. Alyokhina, and O. Brunetkin, who
are the Doctors of Engineering Science. A number of the propositions that

ix
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are included in the book were obtained by the authors in collaboration with
PhD students, where the authors were scientific supervisors.

There are six sections in the book. The first chapter “Physical Safety
Basis of WWER Nuclear Fuel” is devoted to the safety of the SNF storage
facility, which is necessary to create guaranteed conditions for thermal states
throughout the entire operation time of the storage facility and it creates the
possibility to control the sources of ionizing radiation.

The second chapter «Modern Approaches to the Heat Exchange
Modelling in NPP Equipment» reveals the methods of the development of
mathematical models of nonstationary heat transfer of the technical system,
which provides the heat transfer related to any state of nuclear fuel. It
is necessary to generalize the principles of physical modelling in order
to fold information, which gives opportunity to check it by means of a
mathematical model, evaluation of alternative variants of the physical model
under consideration, and the choice of the best one.

The third chapter «Safety Criteria for WWER-1000 Fuel Assembly when
Making a Decision about its Dry Storage» is devoted to the search for
optimality criteria for the control of a NPP with WWER-1000 for which
it is necessary to find efficiency criteria that would take into account the
requirements of nuclear safety. This makes it possible to compare any
methods of operating the reactor core, including power maneuvering.

The fourth chapter «Effect of Reactor Capacity Cyclic Changes on
Energy Accumulation of Irreversible Creep Deformations in Fuel Claddings»
presents the modelling of the operation of nuclear fuel in cyclic modes;
this is necessary to ensure compensation for power changes within the daily
or weekly production scheduling of the power system requirements, which
makes it possible to compare the considered control programs with the
inherent specifics of each change of technological parameters, which has a
significant effect on the interaction “the fuel pellet and the cladding» and
leads to leakage.

The fifth chapter «Analysis of WWER 1000 Fuel Cladding Failure»
deals with the definition of the computed values of leakage probability of
fuel element claddings, taking into the account the inhomogeneity of the
distribution of energy release among fuel elements of fuel assemblies, which
is necessary to control the properties of fuel elements; it also makes it possible
to control the value of cladding failure and, therefore, at the same time, the
predicted probability of depressurization of the cladding of fuel elements
happens.
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The sixth chapter “Thermal Safety Criteria for Dry Storage of Spent
Nuclear Fuel” is devoted to the development of the basis for the analysis
of thermal regimes of SNF dry storage, which is necessary for the safe long-
term operation of an interim SNF storage, as a result of which it is possible to
make an informed decision about the possibility of subsequent reprocessing
or disposal of nuclear fuel.

The presented material in the chapters allowed the authors to formulate
the following method, that ensures the safety of the nuclear fuel that is
operated.

The conservatism which lies in the design of the fuel elements can be used
not only for an increase in the capacity of a nuclear power unit in excess of
the design one or for operation in maneuverable modes, but also for ensuring
long-term dry storage of spent nuclear fuel.

It is generally accepted that mechanical failure of nuclear fuel according
to the stress corrosion cracking model is completely excluded due to the
limitation of the linear capacity and the rate of its increase, but this is not
always the case, as it is possible to simultaneously impose technological
operating conditions when such a previously excluded model starts affecting
nuclear and thermal safety.

To prevent such a possibility, it is constantly necessary to minimize or
practically eliminate the following four processes during the operation of
nuclear fuel in the reactor:

— not to load any fuel assemblies with the first power leap immediately
after refueling;

— alternate switching on of main circulation pumps when gaining power,
especially in the first 40 effective days;

— if, after reloading of nuclear fuel, the unit operated at its nominal
capacity for several days (there was no sufficient accumulation of cracks in
the fuel pellets) and was unloaded or stopped, then its reloading must be
carried out according to a special program, and not according to operating
management recommendations;

— not to allow an opposite change in the coolant temperature with
changes in the current power in the upper and lower parts of the reactor core.

If simultaneously any two of the stated processes occur, then they
significantly reduce the resource and do not allow keeping the fuel in proper
condition for its dry storage. Moreover, it will not be possible if at least three
of any processes are superimposed in one time interval. It is very difficult to
predict what will be the properties of the fuel if four processes coincide at the
same time in the current time interval.
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As a rule, a probabilistic safety analysis is carried out in order to prevent
emergency design conditions of severe accident conditions. Such an analysis
does not objectively evaluate the situation, but the analysis method allows
ultimately estimating the state of the fuel, which turns out to be erroneous in
principle under current operation conditions.

Due to the fact that all the options in the analysis were not estimated,
during operation there is a high probability of making a wrong decision.
As a result, the operations personnel choose “the best option from the worst
one.” The best one of those, which were considered in the probabilistic safety
analysis.

If to apply this strategy when operating a power unit, then instead of
objective assessing of the processes that occur, weighing all the pros and cons,
the operator tries to evaluate the state of the nearest future. As a result, the
decision made and the development of the situation keep the power unit from
emergency modes, but at the same time the number of failures formed in the
nuclear fuel increase. However, paradoxically, no one takes these failures into
account in the future, and they usually begin to manifest themselves at the end
of the period when the fuel is in the reactor core. The paradigm proposed by
the authors is as it follows.

To identify the current state of the fuel and the ongoing processes that
affect the safety of the fuel, and then operate it so that the subsequent states
of the fuel ensure its long-term operation.

Anyone who cannot identify the current state of the nuclear fuel in the
core simply does not know what is happening with the fuel at the moment.
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1
Physical Safety Basis
of WWER Nuclear Fuel

1.1 Fuel Burn-Up as a Nuclear Safety Criterion

The safety of spent nuclear fuel (SNF) management is based on the
implementation of the following criteria [1, 2, 3]:

• non-exceedance of fuel element temperature limits due to residual
energy release;

• non-exceedance of the level of ionizing radiation effect on staff and the
environment;

• guaranteed subcriticality of the storage cask loading or transport cask of
the spent nuclear fuel.

The issue of ensuring the fuel cladding integrity as one of the physical safety
barriers is a topical matter in the process of the development, implementation,
and operation of spent nuclear fuel interim storage [4].

The system of thermal and strength criteria of the cladding integrity
support has been internationally adopted. Herewith, the thermal criteria are
established keeping in mind the necessity to ensure the strength of the
fuel cladding. Consequently, the predictive validity of the cladding failure
detection under various storage conditions can have a significant impact on
the set permissible storage temperatures and, as a result, it can influence the
economic factor of spent nuclear fuel dry storage projects [5].

It should be mentioned that the residual heat of each spent fuel
assembly under production-line conditions is not currently controlled by
standard methods. Instead, computational methods based on experimental
dependencies obtained by calorimetric measurements in laboratory conditions
are used. Slow kinetic processes cause the residual energy release, while
fast kinetic processes are accompanied by the release of gamma radiation,

1
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which is not absorbed or recorded. The results of research establishing the
dependence of the 137Cs gamma radiation intensity and the power of heat
formation in the fuel assembly are known [6–10].

However, there may be a significant difference between fuel assemblies,
depending on their burn-up and operating conditions in the reactor core. In
this regard, the process of forming a container loading cannot entirely rely
on computations. In addition, we can achieve significant financial savings if
accurate measurements of the residual energy release are established since
each container is expensive; that is why we should make the best of its usage.
Therefore, the nuclear fuel burn-up should be considered as one of the safety
criteria when loading into the storage system. For its effective identification,
the method for the experimental determination of the heat of residual SNF
energy release by means of fast measurements of gamma radiation has been
developed.

When analyzing the safety of SNF management systems, the burn-up
of specific fuel assemblies is not taken into account, that is, when making
an estimate of nuclear safety parameters, all fuels are considered to operate
under the same conditions and have some average characteristics. As a result,
the calculated value of the subcriticality of the system is conservatively
overestimated [11, 12].

This approach was initially due to the imperfection of the calculation
programs for determining the reactivity of burned fuel systems and the
eventuality of human errors.

The development and improvement of computational methods in recent
years allow reducing the conservatism of the computational results at the cost
of the burn-up account of a specific fuel assembly, without sacrificing the
required subcriticality (coefficient keff ) of a system with a given geometry
that takes into consideration neutron leakage and does not reduce its nuclear
safety.

Figure 1.1 shows an example of the k dependence (the subcriticality of
the system with infinite geometric dimensions without taking into account
neutron leakage) on the burn-up for a standard UO2 fuel assembly. For burn-
up of 40 MW-day/kg, the fission coefficient is approximately 30% less than
that for fresh fuel [13].

When we consider burn-up as a nuclear safety parameter, the concept of
nuclear safety maintenance can be used for all elements which provide the life
cycle of spent nuclear fuel, spent fuel pool storage racks and central storage
of the atomic nuclear plants, NSF dry storage cask, processing facilities, etc.
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Figure 1.1 k dependence on the burn-up for a standard UO2 nuclear fuel assembly.

Nowadays, the conditions for the promotion of nuclear power plant (NPP)
competitiveness require bringing up average burn-up to 60–65 MW-day/kg,
which, in its turn, puts a limit on the initial enrichment value of 235U
4.8%–5.1% for reactors with the capacity of 1000 MW [14]. Under the
specified enrichment values, the transportation of SNF in the current
transportation cask without the account of burn-up is not possible. This
problem has already been encountered when using fuel with enrichment of
4.4% in WWER-440 reactors. We can increase the enrichment value for the
CASTOR-V/52 transportation cask from 4% up to 4.6% keeping track of
burn-up. It is reported that a possible increase of transportation cask capacity
is between 10% and 100% [15]. The allowable increase of capacity depends
on the initial enrichment and the minimal guaranteed burn-up.

The researchers [13] found out that maximum permissible enrichment of
230 nuclear fuel assemblies, which are located simultaneously in the plant
interim storage facility of La Hague, can be increased from 3.3% to 4% on
condition that the burn-up is not less than 10 MW-day/kg.

The use of burn-up as a nuclear safety parameter faces quite complex
problems; the main problems are [16]:

• which isotopes must be considered when determining the fission
coefficient;
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• what burn-up value should be taken into account since fuel assemblies
have different burn-up profiles.

To solve the first problem, i.e., when choosing isotopes, three main
approaches are used [17]:

• accounting only for the depletion of primary fissile material;
• additional accounting for actinoids with large atomic masses formed

during the operation of the reactor;
• additional accounting for fission products, which have a high neutron-

absorption cross section.

It is relatively simple to bring the first scheme into action because most of
the calculation programs and evaluated nuclear data file are verified on a
large amount of experimental data [18–20]. Any additional analysis of fuel
compositions with respect to actinoids with large atomic masses formed
during the operation of the reactor requires a higher level of experience
with software codes and evaluated nuclear data file. Complete account of
neutron absorption by fission products is one of the most complicated
tasks, especially for high level of burn-up. This is largely due to abundance
of isotopes that should be taken into account. Most of the corresponding
computational programs and evaluated nuclear data file are currently being
under implementation and validation. Figure 1.2 shows the dependence of
the effective neutron fission coefficient for various calculation models [17].

Figure 1.2 Dependence of the effective neutron fission coefficient for various calculation
models [17].
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It is worthwhile noting that the analysis of the use of burn-up as a safety
criterion requires more calculations than the standard analysis of criticality,
as it requires the calculation of the SNF isotopic composition.

As it is pointed out in [21], typical program codes (OECD/NEA) used for
reactor computations may not be suitable to use Burn-Up Credit (BUC) as a
safety criterion. This is due to the fact that complex models are used in the
calculations of the reactor core and special requirements are imposed on the
initial data. Therefore, the codes and data are closely related. The purpose of
computations of the reactor is its efficiency. When we use codes for non-
reactor zone facilities (for example, an SNF transport container, SNF dry
storage container, etc.), the purpose of the computations is maximum safety
of their operation. It should also be taken into account that these facilities
can contain fuel with different production history and which was produced
by different manufacturers.

It is noted in [22] that the use of BUC involves knowledge of the exposure
time, burn-up, initial enrichment, and isotope distribution. For example, the
practical application of this approach in France requires the fulfillment of the
following criteria:

• burn-up value is based on the least irradiated 50 cm of the active length
of the nuclear fuel assembly;

• actual burn-up value must be checked by measuring each nuclear fuel
assembly.

The type of measurements, whether qualitative or quantitative, depends on
specific conditions, expected burn-up, and initial enrichment. For example,
if an expected burn-up is less than 5.6 MW-day/kg and enrichment is less
than 3.3%, qualitative measurements are enough, while higher burn-up and
enrichment values require quantitative measurements.

The concept of burn-up usage as a nuclear safety parameter is not a
modification of the basic safety principles or an attempt to define new
safety principles [23]. From this point of view, real-time burn-up definition
allows ensuring the principle of safety priority directly in the process
of SNF overload while improving the economic performance of nuclear
power plants.

To provide the implementation of these alternatives, it is necessary to
consider methods and means how to control nuclear materials, determine the
nuclear fuel burn-up, as well as to find technical solutions that allow real-time
burn-up measurement.
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1.2 Influence of the Reactor Operating Mode on the
Efficiency of WWER-1000 Fuel Cycles

The main issues of the economics of a fuel cycle are presented in the
following works [24–28] and others. Even without taking into account
macroeconomic aspects, they are extremely complex and belong to the
class of optimization tasks. The traditional approach is based on two main
principles:

• the power unit is to operate on rated capacity between refueling;
• the ratio of the plant unit downtime to its on-time is to be minimal.

Hence, we have the task of reducing the duration of preventive maintenance
and developing a program to increase the duration of fuel lifetime. Due to the
fact that a clear, comprehensive criterion for the efficiency of nuclear power
plants is still unknown, many aspects are excluded from consideration. For
example, in [29], the authors show that even the regular use of the operation
mode of the WWER-1000 power unit with partial use of negative reactivity
effects leads to a decrease in the average power level per a campaign. On
the other hand, it allows increasing the yearly average power production or
decreasing the cost value of the fuel component of supplied electricity without
the reduction of the yearly average power production.

The operation time between refueling depends not only on the
commercial efficiency of the cycle options but also on such conditions as
ensuring preventative and predictive maintenance at any given time (for
example, operation out of the bounds of the autumn and winter peak
of electricity consumption, operation of other units of the given nuclear
power plant, and the reliability of the equipment). Thus, the duration of the
campaign can be significantly reduced, regardless of the type of the used fuel
cycle.

The introduction of cycles with reduced neutron leakage, as it was
implemented at the Khmelnitsky NPP (KhNPP), makes it possible to form
a wide range of loadings within the framework of the limitations mentioned
above. In this case, the fuel campaign becomes, on average, 10% shorter than
the project provides. From the point of view of the traditional approach, these
cycles are less efficient than the projects due to the proportional increase
in the constant constituent of the nuclear generating cost. But in such a
cycle, the neutron flux on the inner surface of the reactor vessel is reduced
by 25%–40%, which creates the prerequisites to a proportional increase of
the life of the reactor, and, thereby, it practically proportionally reduces the
constant constituent of the cost value. In addition, such a cycle makes it
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possible to obtain significant savings in the fuel factor of the cost value and
to reduce the specific amount of SNF per unit of supplied energy, as well
as more frequent performance of preventative and predictive maintenance
additionally increases the reliability of the nuclear power plant operation
during the campaign. The influence of reactor core layout arrangements on
the resource of the reactor vessel is so high that it actually makes it possible
to operate and control it [30].

Under actual operating conditions, the average reactor capacity during
the campaign is lower than the rated capacity. This can be caused by many
factors: partial equipment malfunctioning, which requires a reduction in
power, power line capacity, operation on the power reactivity effect, etc.
When estimating the efficiency of such a unit, the balance of contributions
from different criteria changes.

There are data about the possibility of operation of WWER-1000 power
units at the so-called “daily and weekly” load schedule [28, 31, 32]. This
mode of operation of power units is a promising one, as the market value of
such energy increases by 1.5–2 times and requires a corresponding feasibility
study. Computational and experimental researches [28, 31, 32] show rather
stable behavior of the WWER-1000 reactor core in transient modes under the
appropriate choice of control actions.

As a result, operating conditions of the power unit which can be
constituents of estimation criteria of its operation (average capacity per a
campaign, calendar and effective loading work time, duration of preventative
and predictive maintenance, depth of burn-up of upload SNF fuel, average
integral density of neutron flux on the reactor vessel, etc.) can be described
by a system of dependencies. Constraint functions in these dependencies
are non-linear and are determined starting with the characteristics of the
reactor core that range from the simplest one (e.g., the number of reactor
fuel assemblies) and ending with quite complex, empirically determined
connections. The example can be a link between the fuel make-up
nomenclature, the reduction of neutron leakage from the reactor core, and
the value of the reactivity coefficient according to the coolant temperature at
a minimum controlled power level. The type and amount of fuel assemblies
depend on the reliability characteristics of the equipment as well as the
relation between increasing the depth of fuel burn-up and severization of
requirements for reactor control quality in transient modes [33–37].

In order to choose the type and amount of fuel assemblies, it is necessary
to use a complex approach: at the first stage, based on the experience of
steady-state fuel cycle formation, it is necessary to analyze the layouts
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of specific loads as perturbations of standard cycles. The second stage
is to ensure that the phenomena manifested in the accumulated operating
experience and subject to systematization are taken into account. At the third
stage, the stochastic element must be taken into account, which can be done
using the theory of optimal processes. After the second and third stages, it is
necessary to adjust the results of the previous stages each time. After a series
of iterations, the problem of optimal control of the entire fuel cycle of nuclear
power plants is to be solved. Some fuel loading layout problems are discussed
in more detail below.

The study of fuel cycles in “ideal” conditions of operation of the reactor
excludes from consideration all the parameters except the characteristics of
the reactor core and gives a schematic representation of fuel consumption
effectiveness. Therefore, in the future, an analysis of the impact of the
operation of the power unit in maneuverable mode on fuel consumption will
be given.

It can be shown how the actual operating conditions influence the
properties of irradiated fuel by taking into account the average power level
of the reactor plant per campaign. The consideration of the average capacity
level in a number of regarded parameters allows including two reactivity
effects. Both of them are related to the fact that when operating at reduced
power, the reactivity margin for fuel burn-up in the reactor is higher than
when operating at the nominal level. The first effect is the most significant,
and the power level at which the reactor operates at the end of the load plays
a crucial role here. Reduced power provides the possibility of longer calendar
work as well as longer effective work. Although this leads to a decrease in the
average reactor capacity per campaign, the average annual energy production
and plant capacity coefficient can increase. A detailed discussion of this
phenomenon is given below. The second effect is not of such importance,
but with an accurate evaluation of the operational efficiency of the reactor,
it should be determined and taken into account. It is caused by the fact
that with a decrease in the full capacity of the reactor, the redistribution of
energy release between the fuel cells in the reactor core occurs. As a result,
the neutron leakage value outside the reactor core changes, i.e., inefficient
losses of reactivity margin as well as the distribution of nuclear fuel burn-
up rate over the reactor core take place. The capacity level of operation
and the duration of its operation per a campaign are of great importance
for this effect. In this case, the advantage is in the effective duration of the
campaign as well as the depth of fuel burn-up in the unloaded part of the
reactor core.
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The example of taking into account the decrease in power when analyzing
the cycles is given in [38]; it demonstrates one of the transition methods to
the consideration of the reactor within the conditions of a real operation. It
is shown that for an additional evaluation of the effectiveness of fuel cycle
options, it is possible to analyze the degree of their sensitiveness, from the
point of view of reducing efficiency, and from reducing the reactor capacity
during operation as well.

The control of axial offset is one of the tasks of reactor safety protection,
the quality of its operation in case of the efficiency increase of fuel utilization,
and the use of the established capacity level. In addition, the control of axial
offset is one of the two main components of the problem, which is linked to
the adaptation of WWER-1000 power units to operate in the maneuverable
mode [39–41]. The studies undertaken allow identifying several main,
conditionally independent, possible components of cost advantages:

• the effect of the operation in the maneuverable mode;
• the effect which is related to the nuclear fuel reliability growth;
• the increase of the installed capacity utilization factor;
• the effect of the operation in the mode of the higher burn-up.

The first component of the effect of maneuvering is determined by the fact
that in the European energy market, the electricity generated by the power
units participating in the regulation of the power system frequency is paid
at a higher rate than the electricity generated by the power units, which
provide the standard component of the capacity of the system. The effect
can be estimated at the level of 50% of the cost of electricity generated
at nuclear power plants, allowing for about 7% of losses from generation
reduction during night unloading, as well as increased cost of advanced fuel
and equipment, which will be determined by suppliers and, apparently, can be
estimated at half of the expected effect. The total value of the effect from the
entire complex of works can reach up to 20%–22% of the cost of the energy
generated by the NPP.

If using advanced control algorithms of WWER-1000 control, the second
part of the effect of maneuvering allows the nuclear power unit No. 1 of
KhNPP to operate without preschedule reactor fuel assembly unload due
to the leakage of fuel cladding, with coolant activity in the primary circuit
that makes it possible to operate the reactor core without annual control of
fuel assembly leak resistance. Thus, this component is close to the cost of
all prematurely unloaded leaking fuel assemblies. The average number of
prescheduled fuel assembly unload can be estimated at the level of two fuel
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assemblies for one power unit per year; the increase of fuel factor of the cost
of energy caused by their replacement is about 1%–2% [42].

The third part of the effect of maneuvering allows reconsidering the
approaches to the base-load operation condition. Here the effect of inefficient
financial resources appears; in this case, the power unit has to operate at
reduced parameters due to constraint violations set for the power distribution
in the reactor core caused by the xenon transient process. This value can be
evaluated by the 30-hour of load decrease of 25%.

The fourth component of the effect of maneuvering requires a deeper
understanding, which is given below.

In addition to the studied components of the cost advantages, there are
other aspects, the quantitative assessment of which has not been performed
by the authors.

For example, the reliability growth of nuclear fuel leads to a decrease in
reactor coolant activity, a decrease in the activity of gases in the ventilation
system of a power unit, and a reduction of the personnel radiation doses
during scheduled maintenance. It can also lead to a reduction in these
maintenances and an additional increase in the installed capacity utilization
factor. If handling with the fuel is on the critical path of the preventative
and predictive maintenance conduction, the absence of necessity to change
leaking reactor fuel assemblies or conduction of additional control of the
leak resistance leads to the reduction of the maintenance period and to the
additional increase of the installed capacity utilization factor [33–35].

1.3 Design Constraints and Engineer Suitable Coefficients
When Designing and Operating WWER Fuel Loads

Operational limits or design limits under standard operation are values of
parameters and characteristics of the system state and nuclear power plants
as a whole, which are set by the project for normal operation [43].

The promotion of the nuclear energy competitiveness and nuclear fuel
competitiveness in the global market requires the introduction of new, more
efficient fuel cycles [44].

New fuel cycles include an increase in the burn-up depth, profiling of
enrichment, introduction of burnable absorbers in fuel assemblies, and an
increase of the capacity in a power unit

New fuel cycles make it necessary to review the existing set of operational
limits, namely:
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• introduction of new constraints;
• exclusion of duplication;
• physical “transparentness”;
• exclusion of unreasonable conservatism.

Operational limits lie at the heart of the concept of safety and its constituents,
from which the safety criteria follow. Necessary and sufficient conditions of
safety criteria are given in Table 1.1.

Table 1.1 includes the requirements for the operation of nuclear fuel
that comply with the IAEA recommendations. The principle is invariability,
maintenance of safety criteria such as input data for operational limit
development.

The accomplishment of operational limits is a purpose which can be
achieved by controlling other parameters on the basis of the in-core control
system.

Below, there are operational limits of the WWER-440 (B-213), which,
under the operation of the reactor, are used when choosing loadings
[45, 46]:

• reactor thermal capacity can exceed the nominal value of 1375 MW not
more than 4%;

• coolant pressure at the output of fuel assemblies with six operating main
circulation pumps (MCP) may differ from the nominal value (12.26
MPa) at the most 0.2 MPa.

• coolant inlet flow when there are six working MCPs is not less than
39,000 m3/h.

• average coolant temperature at the inlet of the reactor core is to be in
range of 265◦C–270◦.

• maximum capacity of the fuel element and fuel element with Gd is 54.5
kW if pin-to-pin spacing in an assembly is 12.2 mm and maximum
capacity 56.6 if pin-to-pin spacing in an assembly is 12.3 mm.

• marginal linear load and changes (jumps) in the linear load of a fuel
element and fuel element with Gd depending on the burn-up is in
accordance with the graphs shown in Figures 1.3 and 1.4.

• subcriticality in case of shutdown is 1%, and in case of refueling
it is 2%.
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Figure 1.3 Field of local fuel element loads with respect to the factor of margin depending
on the burn-up.

Figure 1.4 Fuel element linear load jumps as a result of refueling.

1.4 Criteria and Methods of Nuclear Fuel Safety Evaluation
Under Operation

When performing a maneuver with a power pressurized water reactor, the
operator faces the problem as to how to control the power density field
because of xenon transient process occurrence and axial offset oscillations,
which are the result of this occurrence. The axial offset is determined by a
dependence
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AO =
N −N
N +N

× 100 %, (1.1)

where NB and NH are the capacity of core in upper and lower packages,
respectively.

Obviously, almost any change in the parameters of the WWER-1000
core (capacity, temperature, coolant flux rate, position of the regulating
mechanisms, concentration of the integral absorber, etc.) can lead to xenon
oscillations of the axial offset [47, 48].

As a rule, a power maneuver is planned and carried out as a certain
sequence of relatively fast transitions between power levels at which the
reactor operates for a rather long time. In this case, the task of controlling
the power density field centers on maintaining the axial offset current value
in proximity of the given value [49].

The analysis of the qualitative dependences of variations in axial offsets
with respect to changes of the WWER-1000 main operational parameters
shows that any exposure on the reactor installation leads to an ambiguous
change in the axial offset (Table 1.2). In this regard, it is of interest to evaluate
the thermal technological reliability of the WWER-1000 core during transient
processes.

Since the existing WWER-1000 in-core control system does not allow
measuring any local parameters of the power density field, a numerical
simulation was used to obtain the power density field parameters in the
WWER-1000 core. It was carried out for a reactor that was in the steady-
state fueling mode with a three- and four-year campaign. The computer
code BIPR-7A was used as a modeling tool [50]. For both campaigns, a

Table 1.2 Main axial offset perturbation actions.
Action Direction Result
Change of reactor thermal capacity N ⇑

N ⇓
AO ⇑
AO ⇓

Change of k-group position of regulating
mechanisms of control system and protection in the
upper half of the core

Hk⇑
Hk⇓

AO ⇓
AO ⇑

Flow variation G ⇑
G ⇓

AO ⇓
AO ⇑

Boric acids concentration change in a heat pump of
the primary coolant circuit

Cb⇑
Cb⇓

AO ⇓
AO ⇑

Temperature change of a heat pump at the core inlet Tin⇑
Tin⇓

AO ⇓
AO ⇑



18 Physical Safety Basis of WWER Nuclear Fuel

hypothetical xenon transient process was considered both at the beginning
and at the end of the campaign. A three-hour decrease of the thermal power
in the reactor to 50% and its increase again up to 100% was simulated. This
mode was chosen as the most logical and the most cost-effective one with a
possible maneuverable operation cycle.

The analysis of the table data showed that the largest axial offset
oscillations occur during a power maneuver at the end of the fuel campaign
during a four-year fuel cycle (Figure 1.5). At the beginning of the campaign,
with a large margin of reactivity, the arising axial offset oscillations tend to
decay, but at the end of the fuel campaign, the opposite effect is observed.

Let us consider the external temperature of the fuel element claddings
and the safety flux before the heat transfer crisis in the most loaded fuel
assemblies at the upper and lower maximums of the power density. An
unambiguous relation between axial offset oscillations and local values of the
power density field is shown in the computation and experimental work [51].

The rate of heat transfer from the fuel elements to the coolant determines
the temperature regime of the fuel element cladding. The value of the
heat transfer coefficient varies significantly depending on the hydrodynamic
structure of the coolant flow and its state of aggregation. When calculating
nuclear power reactors with water coolant in a general case, it is possible to
consider convective heat transfer, heat transfer with surface boiling, and heat
transfer with developed volume boiling of coolant.

Figure 1.5 Axial offset after the transient process at the end of a (1) three- and (2) four-year
campaign.
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The heat transfer coefficient for convective heat transfer conditions, as
is the case for WWER reactors, can be calculated using the well-known
Mikheev empirical formula [52]

α = 0, 021
λ

dΓ

(
ρω dΓ

µ

)0,8

Pr0,43 (1.2)

where λ, µ, and Pr are correspondingly the heat conductivity coefficient,
dynamic coefficient of viscosity, and Prandtl number for coolant in a design
sector of the reactor fuel assembly; ρω and dr are a mass flow of the coolant
and a hydraulic diameter of a fuel element.

To determine the temperature of the fuel element wall, we shall apply the
following equation:

Twall =
qs ·KV

α
+ Tcool (1.3)

where Tcool is the coolant temperature in the corresponding reactor core
elementary volume; KV is the radial power peaking coefficient; qs is the
graded density of fuel element thermal radiation.

The determination of thermal characteristics of the reactor core is possible
according to the following scheme (Figure 1.6), taking into account the fact
that the source data for it are the output files of the BIPR-7A program.

Figure 1.6 Computation scheme of thermotechnical reliability.
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Table 1.3 Computational results of the fuel element walls during the first 7 hours after the
completion of the power maneuver.

Time after the
Beginning of the
Transient Process,
Hours

Maximum Loaded Lower
Section of the Fuel
Assembly

Maximum Loaded Upper
Section of the Fuel
Assembly

Tcool, ◦C KV Twall, ◦C Tcool, ◦C KV Twall, ◦C
3 291.47 1.071 308.52 323.33 1.681 350.10
4 291.36 1.051 308.10 323.45 1.68 350.20
5 291.36 1.058 308.20 323.58 1.658 349.98
6 291.48 1.089 308.82 323.74 1.619 349.51
7 291.7 1.143 309.90 323.91 1.565 348.83

The definition of thermal characteristics of the core is possible according
to the following scheme (Figure 1.6), taking into account the fact that the
input data for it are the output files of the BIPR-7A program.

Such calculations allow running some versions of programs such as
RELAP, DIN3D, as well as their combination.

The results of the calculations of Tcool and KV , as well as the temperature
of the fuel element walls for the upper, most loaded part of the fuel assembly
and its lower section, which is symmetrical to it relatively to the horizontal
plane of the core, are given in Table 1.3.

In order to calculate the margin of power before the heat transfer crisis
(usually expressed as the ratio of the critical heat flux to the nominal K =
qcr/qS), it is necessary to define the so-called heat flux critical density qcr. of
the fuel assemblies.

There are several empirical formulae to define fuel assembly qcr which
are based on the research of flow models for various types of reactors,
various thermohydraulic parameters, and states [53]. For this analysis, we
used the equation that allows evaluating qcrI in a fuel assembly with an error
limit of 11%

qcrI = 0, 0274 · (ρω)0,505 · (1− E)1,965 · (1, 3− 9, 4 · 10−4 · P ) (1.4)

where P is the coolant pressure in the primary circuit; ρω is the coolant mass
flux; and x is the flow quality.

This dependence is applicable to the pressure of WWER-1000 (P = 16.7
MPa) reactors under conditions of uniform heating of the rod bundles.

In addition, in order to calculate the heat transfer crisis in fuel assemblies
of WWER-1000 reactors, experimental design bureau “Hydropress”
recommends the formula obtained under conditions as close as possible to
the operating conditions of this reactor [53]
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Table 1.4 Data on how to calculate the safety coefficient before the heat transfer crisis in the
maximum loaded fuel assemblies.

Time after the Beginning of
the Transient Process, Hours

qcrI ,
MW.m−2

qcrII ,
MW.m−2

qs,
MW.m−2 Csf 1 Csf 2

3 3.163 5.139 0.940 3.37 5.470
4 3.160 5.126 0.939 3.37 5.459
5 3.155 5.111 0.927 3.40 5.516
6 3.150 5.094 0.905 3.48 5.629
7 3.145 5.075 0.875 3.60 5.802

qcrII = 0, 795 · (1− E)n · (ρω)m · (1− 0.0185 · P ) (1.5)

where n = 0.105.P = 0.5, and m = 0.184 − 0.311.x; the other parameters are
as in the formula for qcrI .

The behavior of the analyzed parameters allows concluding that during
the first hours after the beginning of the transient process, there are favorable
conditions to operate the reactor according to safety criteria (Table 1.4). We
can observe an increase in the temperature of the fuel element cladding at
the bottom of the reactor core due to a shift in the maximum power density
exactly there, which, in fact, is not dangerous, because the temperatures at the
bottom of the core are initially 20◦C−25◦C lower than at the top. Further, the
temperature begins to fluctuate because of the redistribution of the neutron
field due to the temperature effect of reactivity.

The temperatures in the lower and upper parts of the reactor core fluctuate
in antiphase. If to analyze the temperature behavior in the upper part of
the fuel assemblies, it can be noted that during the first 7 hours of the
transient process, there is an opportunity to control the state of the reactor
as, at this time, the lower harmonic of temperature fluctuations is observed.
Fluctuations in the temperature of the containment reach dangerous values
(350◦C) (from the point of view of the storage before the beginning of surface
boiling) which is especially evident at the end of the fuel campaign.

The methodology for evaluating the heat and technology reliability of
the reactor core, its calculation, and experimental justification are given
in [54] and [55], where the authors show that under such conditions, any
temperature fluctuations (fluctuations in coolant or cladding of fuel elements)
are practically absent, i.e., they are within the estimated error.

The formulae available in the literature and used here to calculate the
critical heat flux qcr and corresponding safety coefficient before the crisis
approximately equally describe the behavior of the reactor core and its heat
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and technical reliability but differ significantly in the numerical values of the
safety coefficient.

The WWER-1000 reactor is designed on a conservative approach,
including a significant reserve of thermal and technical characteristics of fuel
assemblies during operation in transient modes.

The presence of a significant reserve before the heat transfer crisis in fuel
assemblies creates prerequisites for transferring the WWER-1000 reactor to a
maneuvering mode of operation, which is extremely important for the current
state of the energy industry in many countries. Problems before the heat
transfer crisis in fuel assemblies belong to the class of unsteady-state heat
transfer problems and are currently solved exclusively by numerical methods.

The problems of unsteady-state heat transfer in bodies that have the form
of geometric primitives (an endless plate, a cylinder, and a ball) belong
to classical problems. The results of their analytical solution are given in
monographs and many textbooks on heat transfer. In well-known sources,
the results of solving such problems are presented in a dimensionless form
for generality. As a result, the functional dependence of the temperature of
the bodies on time, for example, for the body central points, is presented
in a two-criteria form: depending on the Fourier number (dimensionless
time) and the Biot criterion. In a graphical form, it corresponds to a set
of curves for each considered point. For each of the given bodies, its own
solution and, accordingly, an individual set of curves are designed. But for the
engineering application of such functional dependencies, the understanding
of the adequacy of the mathematical model to a real unsteady-state heat
transfer process is necessary.

One of the methods that allow adjusting the adequacy is the ability to
bring the model to an automodeling form. The theory of similarity is closely
connected with this method. In the given field, there is a basic π-theorem
(in English literature − Buckingham theorem; in French – Vaschy theorem),
fixing the possible number of dimensionless values in transformable
models.

On the way to the further development of dimensionless methods to
solve problems of unsteady-state heat conduction, a certain success has been
achieved. But the methods used by researchers are the result of the intuition
of their developers. As for the scientific approach, it is necessary to consider
the method as a coherent logical system which provides the basis for further
work in this direction and indicates the relevance of research. Therefore, in
the future, it is advisable to consider new approaches for modeling unsteady-
state heat transfer processes in nuclear power plant equipment as well as
nuclear fuel.
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