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A modification of the NEAT algorithm is proposed through the use of a mechanism for 

changing the level of mutations. At the same time, both the weight coefficients and the 

number of neurons in the hidden layers and the connections between them change. For 

the task of modelling the XOR operator, a significant acceleration of the training of a 

neural network was obtained. 
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In traditional approaches to the use of neural networks, the network topology is usually selected and fixed 

before it is trained [1]. And the training itself consists of adjusting weights to ensure the extremum of the quality 

function. To select the neural network topology that is most suitable for a particular task, they try to train neural 

networks with various topology options and ultimately choose the one that shows the best values of the quality function 

or requires the same amount of computation for the same values of the quality function. Obviously, such a path is 

extremely costly in the computational sense and does not provide the best version of the topology due to the very large 

number of possible options. Therefore, it seems promising to develop and study algorithms that simultaneously 

configure both weighting factors and the topology of the neural network itself. 

Various versions of training algorithms for neural networks with the simultaneous adjustment of both weights 

and network topology began to appear in the 90s of the last century [2-5] and continue to be developed to date [6-9]. 

The main issues encountered in the development of such algorithms are the following [6]: 

- how to most effectively present variants of the neural network topology to be able to select the most useful 

elements and filter out the rest, 

- how can a topological innovation be protected on the interval of the number of training iterations necessary 

to adjust its weight coefficients and manifest in the value of the quality function, 

- how to ensure minimal neural network topology without using special functions that measure the complexity 

of the current configuration. 

Among the algorithms aimed at solving these issues, one of the basic ones is the NEAT (NeuroEvolution of 

Augmenting Topologies) genetic algorithm [6]. All new modifications represent an improvement on this algorithm. 

As a rule, all new ideas can be used for this algorithm at the same time. Therefore, in this work, when developing a 

new modification of the NEAT algorithm, it seems appropriate to use it as a base one as well. 

The entire configuration of the neural network in the form of a linear representation of neurons and the 

connections between them is used as the genome in the NEAT algorithm. The initial conditions for the genome are 

set in the form of a minimal configuration of the neural network and its size increases as it learns. To control the 

expandability of the network, each element of the genome (neurons and the connections between them) is assigned an 

innovative number that allows you to take into account the moment this element appears in the genome and, 

accordingly, the number of iterations of the learning algorithm during which this element is part of the given genome. 

The presence of an innovative number allows us to differentiate elements of genomes (genes) depending on the history 

of their appearance in the genome. Genes are called matching if they have the same innovation numbers. If the numbers 

are different, then the genes are called disjoint if the number of one lies in the range of the number of innovations in 



 

 

the genome of the other gene, or redundant if the number of one is outside this range. When a new genome is formed 

from matching genes, one of them is randomly taken from any parent, and redundant and disjoint genes are taken from 

the parent with a large value of the quality function (fitness function). Thus, the NEAT algorithm produces a crossover 

without using the function of assessing the complexity of the current topology and is aimed at ensuring the 

predominance of genes with a positive effect over random genes. 

Since the introduction of new structural elements in the short term usually worsens the importance of the fitness 

function, and a positive effect is achieved after appropriate weighting, the NEAT algorithm uses innovative numbers 

to form niches for genomes with structural innovations and having similar topologies. Moreover, over a given number 

of iterations, genomes compete with each other only within niches, and not with the entire set of genomes. This allows 

you to protect new topological elements while adjusting the weight coefficients of these elements. The network 

structure gradually increases as structural mutations occur, leading to a better value of the quality function. 

The aim of this work is the further development of the NEAT algorithm to ensure a higher learning speed and 

achieve the resulting structure of a neural network with a small number of neurons and the connections between them. 

The NEAT algorithm is based on the ideology of the genetic approach [10] and, accordingly, involves the 

following steps [6]: 

1) Generation of an initial population of individuals; 

2) The calculation for each individual of its suitability with the help of a fitness function (quality function); 

3) Removal of weak individuals; 

4) Conducting a crossover of the best individuals in order to produce a new population; 

5) Carrying out mutations of descendants due to changes in weighting factors, adding/removing connections between 

neurons, adding/removing neurons; 

6) Repeat steps 2-5 until the desired value of the quality function is reached. 

Elite selection is used to remove weak individuals. He assumes that there remains a fixed percentage of the 

best individuals, and the rest are discarded. 

The NEAT algorithm assumes three types of mutations. 

1. Mutations of weights (Fig. 1) 

 

Fig. 1. Change in weights in existing relationships. 

 

2. Removing/adding connections between neurons (Fig. 2). 



 

 

 

Fig. 2. Adding a connection between existing neurons. 

3. Addition / removal of neurons (Fig. 3) 

 

Fig. 3. Adding a neuron to the network 

The variety of mutations used determines the complex nature of the movement of the learning algorithm on 

the surface of the quality function. The essence of the proposed modification of the NEAT algorithm is to add a 

mechanism for changing the intensity of mutations. It can be configured using the following four factors: 

1. mutation_intensity - initial (and, subsequently, the current value of the intensity of mutations); 

2. mutation_intensity_max - a maximum allowable value of intensity; 

3. mutation_intensity_min - the minimum acceptable value of intensity, which is used when resetting the current 

mutation, when the network exceeded the previous value of the fitness function; 

4. mutation_intensity_step - step of the mutation intensity, by which the current intensity increases if the 

network during mutations remains at the same value of the fitness function. 

The number of mutations that will be carried out on one individual will vary from 1 to the value of 

mutation_intesity, that is, the current intensity of mutations. If the network is stuck in the learning process, the 

mutation intensity will slowly increase, thereby increasing the number of mutations per generation in order to 

accelerate the growth of the network. As soon as the network reaches a structure of higher complexity, and the value 



 

 

of the fitness function begins to increase again, the intensity of mutations is reset to the minimum value, the speed of 

mutations decreases so that the network does not create random extra connections and neurons. 

We will verify the performance of the modified NEAT algorithm by the example of modelling the logical 

operation of “exclusive OR” (XOR) [2]. The truth table of the XOR operator is shown in table 1. 

                                  

  Table 1 

 

 

 

 

 

 

The function was used as a fitness function. 
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ijans  - the response of the neural network to the combination of ij at the inputs, 

        
ijout  is the correct answer for the XOR operator when combining ij to the entrance. 

Figure 4 shows the change in the structure of the neural network as it is trained by the modified NEAT 

algorithm and the corresponding values of the fitness function (fitness parameter). 

 

Fig. 4 - The structure of the neural network: a - the starting structure, b - for fitness = 150, c - fitness = 

172, d - fitness = 200. 
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From a comparison of the configurations of the neural network at different stages of training, it can be seen 

that weights are first set up, and when the increase in the value of the fitness function slows down significantly, new 

neurons and connections are added. After that, setting the weights again becomes a priority. 

To obtain averaged characteristics, the neural network learning process was run 10 times for the NEAT 

algorithm and the modified NEAT algorithm. The corresponding numbers of populations on which full network 

training was achieved in each of the implementations are shown in Figs. 5 and 6. 

 

 

Fig. 5 - The number of the population on which the network is fully trained in modelling the XOR operator 

for each of the implementations when learning by the NEAT algorithm. 

 

 

 

 

Fig. 6 - The number of the population on which the network has been fully trained in modelling the XOR 

operator for each of the implementations when training with the modified NEAT algorithm. 



 

 

A comparison of the figures shows that the modified algorithm achieves complete network learning for a 

smaller number of populations. Since the work of learning algorithms begins with random initial conditions and uses 

random number generators when performing crossover and mutation operations, the NEAT algorithm in some 

experiments also required a small number of populations. Figure 7 shows the learning curves averaged over 10 

implementations for the NEAT algorithm and the modified NEAT algorithm when the neural network simulates the 

operation of the XOR operator. 

 
 

Fig. 7 - Comparison of the learning speed of the neural network when modelling the XOR operator with the 

NEAT algorithm and the modified NEAT algorithm 

 

 

A comparison of the learning curves shown in Figure 7 shows a significant advantage of the modified 

version of the algorithm. 

Usually, in practice, two processes are distinguished - training and the use of a neural network. We can train 

many times on a special powerful computer. But, as a rule, it will be necessary to use it on another calculator, which 

is either less powerful or loaded with other tasks. Therefore, in practice, you need to make a certain amount of training 

and take the minimum configuration to use. Based on this, it is possible to compare the average number of experiments 

with their generation of populations in each (more precisely, the total number of generations) that must be performed 

in order to obtain the minimum configuration. Figure 8 shows the average number of generations needed to find a 

solution depending on the intensity of mutations, and Figure 9 shows the average number of generations needed to 

find the maximum of the quality function and the minimum configuration depending on the intensity of mutations. 

 

 

 
                     

Fig. 8 - The average number of generations required to find a solution depending on the intensity of mutations 



 

 

 
 

Fig. 9 - The average number of generations required to find a solution and the minimum configuration depending 

on the intensity of mutations 

              

Figures 8 and 9 show that with an increase in the number of mutations from 1 to 5, the average number of 

generations of new populations that need to be done to find the maximum of the quality function without paying 

attention to the size of the resulting neural network decreases by more than 7 times. Naturally, to achieve the minimum 

configuration of a neural network, it is necessary to produce an average of 3-4 times more generations. Figure 9 shows 

that with an increase in the number of mutations from 1 to 5, in order to find the minimum configuration, an average 

of 4 times less is the generation of populations. 

 

Conclusions 
 

Additional use of the mechanism for controlling the intensity of mutations in the NEAT algorithm can 

significantly increase the learning speed of the neural network in the task of modelling the XOR operator. 

This, in turn, leads to a decrease in the total amount of computation required to fully configure the neural 

network and achieve a minimum configuration. However, due to the very large search space when solving complex 

problems by the NEAT algorithm, further development of this algorithm is necessary for the direction of increasing 

the learning speed and parallelizing operations for implementation on multiprocessor computers. 
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