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ABSTRACT 

This paper presents an approach to improving the scalability of the decentralized smart contract platform Waterfall, based on the 

concept of hierarchical fractal sharding. Although distributed ledger technology holds significant promise for building secure and 
transparent digital ecosystems, its widespread adoption remains limited by scalability issues. A key challenge lies in the inability to 
proportionally increase transaction throughput with the growing number of participants without undermining either decentralization or 
security. The proposed solution reduces both computational and communication loads by distributing transactions, smart contracts, and 
network state across a system of recursively structured shards. Each shard operates as an independently validated subnetwork 
organized as a directed acyclic graph structure that supports asynchronous execution and consensus. This design enables the 
participation of low-power nodes, enhances load balancing, and achieves scalability not only at the level of the entire network but also 
within its internal components. The study details the mechanisms for shard formation and merging, transaction routing strategies, and 

dynamic placement of smart contracts. In addition, a probabilistic model is introduced to evaluate the risk of malicious capture of 
individual shards, and guidelines are provided for choosing safe shard sizes under various threat assumptions. While the proposed 
architecture is designed specifically for the Waterfall platform, its core principles and several of its methods may be adapted to other 
distributed ledger systems, including but not limited to blockchain-based platforms, particularly those employing modular or directed 
acyclic graph-structured architectures. 

Keywords: Fractal sharding; smart contracts; blockchain scalability; distributed ledger; hierarchical architecture 

For citation: Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu. “Virtually unlimited 

sharding for scalable distributed ledgers”. Herald of Advanced Information Technology. 2025; Vol. 8 No.1: 67–86.  

DOI: https://doi.org/10.15276/hait.08.2025.5 

 

INTRODUCTION 

Distributed Ledger Technology (DLT) has 

emerged as a promising innovation that has the 

potential to transform various industries [39]. DLT is 

a decentralized system that enables secure and 
transparent transactions without the need for 

intermediaries such as banks or government entities. 

The technology is based on a distributed database 
that stores information across a network of nodes, 

where each node has a copy of the database.  
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This feature ensures that no single entity 
controls the data, and any changes to the database are 

validated through network consensus. One of the 

most prominent types of DLT is blockchain, which 

uses cryptographic algorithms to ensure data integrity 
and security [47]. Blockchain technology has gained 

traction in recent years, with many industries 

exploring its applications — particularly in 
Decentralized Finance (DeFi) [35]. 

Vitalik Buterin formulated [20] the so-called 

blockchain trilemma: of the three core attributes – 

decentralization, security, and scalability – a 
blockchain can typically achieve only two 

simultaneously. Since decentralization is intrinsic 
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to DLT, and adequate security is essential for any 
practical deployment, scalability is often 
compromised. For example, the average transaction 

throughput of Bitcoin and Ethereum is currently 
limited to 11 and 63 transactions per second (TPS), 
respectively [7], whereas centralized payment 
systems such as VISA routinely process thousands 

of TPS (e.g., about 7,400 TPS on average 
in 2024 [43]). 

This limitation stems from consensus protocols 

that require every node to validate each transaction, 
leading to significant processing bottlenecks [41]. 
As DLT adoption grows, solving the scalability 
challenge becomes increasingly critical. While 

numerous approaches have been proposed, each with 
its own strengths and trade-offs, achieving a 
practical balance between scalability, security, and 
decentralization remains an open problem. 

Although scalability is widely recognized as a 
key challenge, the core issue lies in the inability of 

current DLT systems to scale performance 
proportionally with network size. In traditional 

blockchain and directed acyclic graph (DAG) based 
architectures, all nodes must execute every smart 
contract and store the complete ledger and state. As 

a result, increasing the number of nodes leads to 
linear or super-linear growth in computational and 
storage requirements — without any corresponding 
increase in transaction throughput. 

The problem addressed in this work is how 

to enable a distributed ledger platform to scale its 

processing throughput and reduce resource 

consumption as the number of participating 

nodes increases. This includes minimizing 
redundant execution of transactions and unnecessary 
replication of data across the network, while 
preserving security and decentralization. 

This work addresses this inefficiency by 
proposing a novel hierarchical sharding technique 
designed to enable proportional performance 

scaling. The approach involves distributing 

transaction execution and smart contract processing 
among multiple shards, and decentralizing storage of 
ledger and state data using an optimal replication 

coefficient. We implement this approach on the 
Waterfall platform, which combines a DAG-based 
ledger with a Proof-of-Stake coordination layer, and 
show that our method achieves scalable, efficient, 

and decentralized transaction processing.  

RELATED WORKS 

Various solutions have been proposed to 
address the scalability issue, including off-chain 

payment channels, diverse consensus algorithm 

optimizations, numerous sharding approaches, etc. 
Off-chain solutions such as Lightning [33] and 
Plasma [32] allow transactions to be processed 

outside the main blockchain, reducing congestion on 
the main chain. Consensus algorithm optimizations 
and new types of protocols, e.g. Proof-of-Stake [30], 
increase the speed of transaction processing while 

also reducing the node load and overall energy 
consumption. 

Sharding (vertical and horizontal) is a well-

established technique in database management 
systems. It entails splitting a ledger to solve the 
problem of scaling. In decentralized systems, 
sharding involves partitioning a set of nodes into 

groups (so-called shards) with or without 
appropriate ledger partitioning [9, 17], [46]. Each of 
the shards can handle a subset of transactions, 
thereby increasing the overall transaction 

throughput. A detailed review of sharding-based 
scaling methods is presented in e.g. [45]. There are a 
few main objects that can be split: network actors 
(validators, wallets, etc.), transactions, and the 

network state. If only one set of nodes is partitioned, 
this is done to speed up consensus and reduce the 
amount of associated communication. If the sharding 

of nodes is performed simultaneously with the 
sharding of the state and the ledger (each shard leads 
its own portion of data), then with a significant 
reduction of network load, we get the problem of 

shard matching coordinating, which can be solved 
synchronously or asynchronously. In the first case, 
the validators of both shards work together, and in 
the second case, transactions are separately executed 

in the shards that they affect, but a confirmation 
mechanism is required. Most existing cross-shard 
transaction processing solutions are based on the 
two-phase commit (2PC) protocol, which contains a 

prepare phase and a commit phase [10, 25]. In 
addition, the implementation of cross-shard 
execution of smart contracts is a particular challenge 
that is presently under active investigation, 

especially for the Ethereum Virtual Machine case 
(e.g. [8, 34]). 

The sharding issue remains a complex and 

ongoing problem of DLT, requiring substantial 
scientific efforts from the community of researchers, 
and at present, proposed approaches have substantial 
concessions. For example, Ethereum 2.0 introduces 

significant simplifications in its sharding design, so-
called Danksharding, compared to its previous 
approach of splitting only the ledger containing 
ordinary transactions [12]. The Open Network 

(TON) presents a multichain system supporting both 
homogeneous and heterogeneous shards with fast-
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forwarding messages between them [11]. Its 
distinctive feature is the automatic change in the 
number of shards, depending on the network load. 

However, finalized blocks are not immutable and 
can be further reorganized. In addition, a modified 
Byzantine fault tolerance consensus protocol [28] 
used by TON can effectively handle relatively small 

(not more than a few hundred) numbers of validators 
that impose certain restrictions on the system’s 
decentralization. A similar dynamic approach for 

shard reorganizing (Adaptive State Sharding) is 
presented by MultiverseX [29]. It improves overall 
security, in particular, preventing conspiracy in a 
shard and other attacks associated with a relatively 

small number of validators. However, shard 
reorganizing demand itself creates additional 
network load and demands extra communication 
overheads. This limitation becomes more and more 

significant as both network validators and wallets 
grow. Also, some platforms propose only 
computational scalability, e.g. Venom [42] and 
Everscale [14] divide the execution of smart 

contracts into threads that are processed by different 
groups of validators in parallel. 

Another approach to the implementation of 

scaling is the creation of so-called sidechains, L2s, 
etc. [1, 13, 36] with their own digital assets 
(including their own coins), different formats of 
transactions, network protocols, architecture, etc. 

Each sidechain is attached to its main blockchain 
and operates parallel to it. At the moment, one of the 
most popular Bitcoin-based sidechains is the Liquid 
Network [24] and Polygon is a popular Ethereum-

based sidechain [31]. 
This approach enables the transfer of assets 

from the main blockchain to the sidechain, where 
they can be processed in a more efficient and 

flexible manner. However, despite their potential 
benefits, there are still several challenges that need 
to be addressed before sidechains can be widely 
adopted. One of the main goals is to ensure the 

security and integrity of the sidechain, as any 
vulnerabilities or weaknesses in the sidechain can 
potentially compromise the entire blockchain 

system. Another problem is ensuring the 
interoperability between different sidechains and the 
main blockchain, which requires the development of 
robust protocols and standards. 

One of the most promising and actively 
developing approaches for providing a connection 
between sidechains and the main network is Zero 
Knowledge (ZK) rollups [40], which can also 

improve the security and finality of transactions, as  
 

they do not rely on fraud proofs or challenge periods 
that are used by other rollup variants. This technique 
aggregates transactions into batches and generates 

ZK proofs for each batch. ZK rollups can reduce the 
amount of data that needs to be stored on the main 
blockchain, as well as the cost of validating 
transactions. In addition, ZK proofs can be used to 

shard smart contracts [27], ensure data availability in 
shards [12], and mitigate other blockchain security 
and scalability issues [38]. 

The evolution of the sidechain mechanism is 
fractal scaling that allows the creation of various 
subnetworks with unique settings. For example, the 
Ethereum sidechain StarkWare [22] uses its own 

sidechains (sub-sidechain) to implement 
customizable functionality. For the same purposes, 
in Kaspa [23], some nodes can be grouped into 
application-specific clusters with specific rules, but 

such partial nodes cannot produce blocks because 
they do not have complete information in contrast to 
full nodes. Currently, the development of scalable 
networks with custom features has gained significant 

traction and it is considered one of the crucial factors 
for the mass adoption of DLTs in enterprise-class 
applications. 

Other notable projects include NEAR network 
protocol [37], which implements dynamic state 
sharding through its Nightshade architecture, 
enabling asynchronous cross-shard execution with 

delayed finality; and Internet Computer DFinity 
project [6], which introduces a canister-based model 
for parallel computation and storage across subnets, 
effectively acting as an application-oriented form of 

sharding. These platforms offer innovative 
approaches to scalability and decentralization, and 
are included in the comparative analysis in the table 
below. 

To enhance clarity and facilitate comparison, 
we  summarize in the table below the key charac-
teristics of several prominent distributed ledger 
platforms that employ sharding. Each platform is 

evaluated according to its sharding type, ability to 
support cross-shard transactions, scalability, 
decentralization, and known limitations. This 

comparative overview contextualizes our approach 
and highlights its advantages over existing solutions.  

The Waterfall platform introduces a fractal 
hierarchical sharding model that addresses the 

limitations identified in other systems, particularly 
by offering virtually unlimited scalability, dynamic 
reconfiguration, and fully integrated support for 
cross-shard transactions without relying on 

centralized coordinators. 
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Table 1. Comparative Analysis of Sharding Approaches 

Platform Sharding 

Type 

Cross-shard 

Tx Support 

Dynamic 

Scaling 

Decentralization Key Limitations 

Ethereum 
2.0 

Static 

execution 

shards 

Limited (via 

Beacon Chain) 

No High Still under full 

deployment, limited 

shard communication 

NEAR Dynamic 
state sharding 

Supported with 
asynchronous 

execution 

Yes Medium Complex routing and 
state synchronization 

Polkadot Relay-chain 
parachains 

Via relay-chain Limited Medium-High Coordination 
overhead, limited 

parallelism 

DFinity Canister-

based 
sharding 

Yes (via 

routing) 

Moderate High Protocol complexity, 

high validator 
requirement 

Avalanche Subnetworks Yes (via 

Avalanche 

Warp 
Messaging) 

Yes 

(independent 

subnets) 

Medium Subnet isolation, 

requires bridging 

Waterfall 
(proposed) 

Hierarchical 

fractal 
sharding 

Fully supported 

via DAG and 
routing 

Virtually 

unlimited 

High Currently in testnet 

phase, tokenomics 
under design 

Source: compiled by the authors 

WATERFALL PLATFORM OVERVIEW 

The scalability approach proposed in this work 

is designed specifically for the Waterfall platform. 

Therefore, before introducing the sharding model 
itself, it is essential to present the key components 

and operational principles of the platform. This 

section provides the necessary architectural context 
for the subsequent sections, where the sharding 

solution will be developed and integrated. 

The Waterfall distributed protocol is based on 

Directed Acyclic Graph (DAG) technology, with the 
Salto Collores consensus [18] supported by the Salto 

Collazo tokenomic model [16, 19] involving the 

participation of millions of nodes. The efficiency of 
this platform is dependent on successful 

collaboration between the Coordinating network and 

shard networks, which work in parallel to achieve a 
high transaction throughput [15]. Every system 

Worker has two essential components: the 

Coordinator and the Validator, both playing key roles 

within their respective networks (Fig. 1). Also, there 
are Light Workers on the Waterfall platform [3] that 

do not store the ledger, but store the entire network 

state. The implementation of the Waterfall platform 
provides for the possibility of deploying several 

autonomous Workers on each node, with a common 

ledger and a pool of transactions. In this case, the 

first of them is considered the organizer of such a 
node. 

In a shard network, all received transactions are 
first added to its DAG-based ledger and are applied 

to alter the network state only after they are finalized 

[5]. A registry of Validators is responsible for 
assigning block producers in each slot at the start of 

each epoch. The Coordinating network handles the 

crucial tasks of linearizing (ordering) and finalizing 
shard ledgers, thereby enhancing security and 

synchronization across the platform. This network 

also holds information about the approved blocks 

generated on shard networks. 
The prime goal of the Waterfall platform is to 

provide an efficient and favorable ecosystem for the 

development of various decentralized applications 
(DApps) using smart contracts and tokens. There are 

embedded tokens (including NFTs) in this network 

that do not demand special smart contracts to release 
and maintain them, but are carried out with ordinary 

transactions that significantly reduce overhead 

charges. In addition, this makes their usage more 

accessible to a wide range of users. 
With Waterfall, a specially developed 

subnetwork technology ensures scalability in terms 

of transaction processing capacity within the shard 
networks; in other words, it provides horizontal 

sharding [2, 4]. A transaction pool, the set of valid 

pending transactions to be recorded in blocks, is split 

between network Validators by applying a 
hierarchical and graph-based clustering algorithm.  
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Fig. 1. Architecture of Waterfall’s nodes and Workers 

Source: compiled by the authors 

However, all Validators of a shard network have 
the same ledger and the same general state of 
processing of all finalized blocks. Thus, as the 
number of Validators and transactions grows, the 
number of blocks in each slot will also increase. 
Although subnetworks parallelize the validation of 
transactions and their inclusion in blocks, further 
processing of blocks to include them in the ledger 
and change the current state is performed by the 
nodes of all subnetworks.  

Hence, the main tasks to be solved by sharding 
are to reduce the node load on: 
1) execution of finalized transactions; 
2) execution of smart contracts; 
3) storing the network state and the ledger; 
4) transmission of network traffic. 

This article describes the first of two stages of 
the Waterfall virtually unlimited sharding. 

1. Homogeneous shards consist of 
approximately the same number of Workers and 
distribute the total workload into approximately 
equal parts. They are created in such a way as to 
minimize the number of cross-shard transactions. 
Our goal is to group network users (network wallets 
and smart contracts) so that they communicate 
mostly within shards, since the intensity of cross-
shard activity reduces the efficiency of the entire 
network. 

2. Heterogeneous shards are built according to 
their principles and can even be developed by a third 
party interacting with others based on common 
requirements and an interface. For example, there 
may be dedicated shards for decentralized finance, 

web3 games, e-voting services, electronic medical 
screening systems, etc. However, dividing users into 
shards that are relatively closed in terms of activities 
not only reduces the overall load on network nodes, 
but also opens up new opportunities for intra-shard 
interactions. 

Currently, the main public network of the 
Waterfall [44] project operates with over 42,000 
active validators and demonstrates a transaction 
throughput exceeding 12,000 transactions per second 
under real-world conditions. 

This architectural overview serves as the 
foundation for the sharding model proposed in this 
work. Since the solution is tightly integrated with the 
internal mechanisms of the Waterfall platform, 
understanding these components is essential. 
Nevertheless, the general structure of our model is 
sufficiently abstract to allow potential adaptation to 
other platforms that share architectural similarities, 
particularly those with modular consensus or DAG-
based data structures. 

SHARD DESIGN 

Shard Ledger. In broad terms, the shard ledger is 
a heterogeneous DAG. Its vertices are blocks, with 
some containing transactions and others serving as 
blocks in the chain to achieve consensus. In addition, 
this DAG has an initial genesis block that establishes 
the network’s rules.  In practical terms, the Waterfall 
DAG is implemented as two separate entities with 
different genesis blocks, block structures, and, 
formally, block creators: Coordinators and Validators 
(Fig. 2).  
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Fig. 2. Structure of a shard ledger 
Source: compiled by the authors 

As we move towards sharding, we preserve this 
outlined structure for each shard. Further, the initial 

blocks of a new shard will also, if needed, refer to the 

blocks of the shard(s) that created it. 
Procedures for Splitting and Merging. First, 

we will describe the procedures for splitting and 

merging shards, and then we will consider when the 

network performs these actions. Initially, the 
Waterfall network operates without shards. 

Consequently, when the network is first split into 

shards, the Root Network and two additional shard-
descendants are created (Fig. 3). The Root Network 

continues the initial network and is designed to work 

only with inherent coins. All smart contracts and 

tokens are distributed among the shard-descendants, 
which are subsequently responsible for working with 

smart contracts and tokens. 

 

Fig. 3. The first splitting 
Source: compiled by the authors 

The procedure for creating these shards is as 
follows. 

1. Two blocks are published in the blockDAG 

network, which will become the genesis blocks for 

shards. These blocks contain the information 
necessary for the operation of the corresponding 

shards. 

2. Split networks begin their work epoch after 
the finalization of the genesis blocks of new shards. 

3. Once sharding begins, smart contract calls 
are published to the corresponding shards, and the 

initial network becomes the Root Network. 

4. Until the part of the Root Network 
blockDAG that contains calls to smart contracts is 

finalized, the states of the token shards cannot be 

finalized. 

5. The Worker-organizer of the node not only 
remains to work in the Root Network, but is also 

assigned to one of the two newly formed shards, 

along with the rest of their Workers-nodemates. 
Therefore, each node is represented in the Root 

Network by only one of its Workers-organizers, and 

all of its Workers in one of the shard-descendants. 

The Root Network performs the following 
functions: 

1) conducts all operations with the main coin of 

the network; 
2) keeps records of shards, splits, and merges 

them;  

3) is responsible for rewarding Workers for 
work in shards; 

4) is responsible for on/off-boarding of Workers 

in all shards; 

5) is responsible for registering new smart 
contracts and embedded tokens. 

All coin accounts are processed in the Root 

Network. Otherwise, nearly all transfers of coins and 
calls of smart contracts would be intershard, 

increasing network workload. At the same time, 

other shards have the same structure as the original 
network and additionally process a certain number of 

smart contracts. Concurrently, data regarding the 
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average computational complexity during network 
operation (represented as the average gas spent per 

second over the last reporting period) is published 

and signed by all shard participants, to monitor the 
need to combine or merge shards. 

Now we will outline the process of splitting an 

arbitrary shard into two subshards. Let us consider 

shard A, which we split into subshards B and C 
(Fig. 4).  

 

Fig. 4. Splitting into two subshards  
Source: compiled by the authors 

The procedure for this split is as follows.   

1. In the Root Network, blocks are published 

that will become the genesis for shards B and C. 

2. Similar to the initial sharding procedure, split 

networks begin their work one epoch after the 

finalization of the genesis blocks of new shards. 

3. Once shards B and C are operational, smart 

contract calls are no longer published to shard A, but 

only to the corresponding new shards. 

4. Blocks in shards B and C reference the 

genesis blocks of those shards and the tips (blocks 

not referenced by other blocks) of shard A. 

5. The non-finalized part of shard A is finalized 

in both shard B and C separately, but at the same 

time, each of the shards finalizes and executes only 

transactions of its respective smart contracts. 

Finally, let us describe the procedure for 

merging shards (Fig. 5). 

1. In the Root Network, a block is published 

that will become the genesis for the new shard. 

2. Similar to the procedure for the initial 

splitting into shards, a new shard begins its work an 

epoch after the finalization of its genesis block. 

3. Until this time, the nodes of the merged 

shards are synchronized. 

4. In addition to the rules for constructing a 

blockDAG, the blocks of the new shard refer to the 

block tips of the shards that have merged. 

5. The ordering of unfinalized blocks from old 

shards is determined in the Coordinating Network of 

the new shard, taking into account references to the 

tips of old shards. 

Note that during both the splitting and merging 

processes, the resulting shards get a number through 

auto-incrementation. For instance, if at the current 

moment the last assigned number is N, then when 

any shard is split, the resulting subshards will be 

numbered as N + 1 and N + 2. Similarly, when shards 

are merged, the resulting combined shard will receive 

the number N + 1. 

Decision on Splitting and Merging. A change 

in the number of shards is usually tied to a change in 

the number of transactions over a certain period (e.g. 

[11, 14], [42]) and the number of Validators (e.g. 

[29]). 

Let us denote by G the average gas consumption 

per second. This value is an integral characteristic of 

the load on the Worker (its Validator component), 

since it determines the volume of calculations 

performed. Also, gas consumption indirectly 

characterizes the average number of transactions, the 

volume of transmitted messages (traffic), and the 

increase in the size of the state and ledger. The 

minimum recommended system requirements for the 

node allow processing up to Gsup per second.  

Next, we set the parameters αmin and αmax, 

0      1.min max   
 

 

 

Fig. 5. Merging of two shards 
Source: compiled by the authors 
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Let us also denote Gmax = αmaxGsup,  
Gmin = αminGsup. In addition, let us denote by W the 

number of Workers in the shard, by Wmin the 

minimum and by Wmax the maximum number of 
Workers in the shard and assume that 

2 ,  2 ,  2 ,min max min pre pre maxG G W W W W  
 

with some Wpre. Then the shard is split into two 

subshards if 

 or   or .max max preW W G G W W  
 

We do not split a shard into two shards in the 

case when G > Gmax and W ⩽ Wpre since in this case 
the resulting shards will have too few Workers. 

Likewise, if 

 or  and ,min min preW W G G W W  
 

then the shards are merged. Fig. 6 graphically 

shows the rule for making decisions about splitting or 
merging shards. 

Distribution of Workers and Smart 

Contracts. Let us now consider issues related to the 

distribution of Workers and smart contracts among 
shards. Their registration takes place in the Main 

Shard. The user contributes a fixed Worker’s stake or 

sends a smart contract deployment transaction with 
the corresponding fee in intrinsic coins. When 

creating a new node, its Worker-organizer is defined 

in both the Root Shard and the shard-descendant. 

Subsequent Workers of this node are placed together 
with the organizer in the same shard-descendant. 

During the onboarding of a Worker-organizer, 

the probability of it getting into some shard is 
inversely proportional to the number of Workers 

already existing there. Thus, on the one hand, 

uniform filling of shards is achieved, and on the other 
hand, the randomness of the distribution does not 

allow Workers to get into a pre-selected shard, which 

mitigates any increase in the share of colluded 

malicious users. 
Let N shards be registered in the system at a 

given time to process smart contracts or embedded 

tokens, one of which can be allocated a Worker-
organizer of a node, with nk (k = 1, . . . , N) Workers. 

 Let us set the probability of a new Worker 

getting into i-th shard 

 

Next, based on the hash of the public key of 

Worker and the hash of the block in which it was 

registered, we calculate the value A in the range from 
0 (not inclusive) to 1 and recurrent with a0 = 0 we 

obtain a partition of the segment [0; 1]: 

 

Then the shard number m, into which this 

Worker will be distributed, is determined from the 
condition 

1     .m ma A a    

Let us now describe the procedure for 

distributing Workers among shards in the case of 

shard splitting. Let XW be an ordered list of shard 
nodes. When dividing this shard into two subshards, 

the two nodes with the largest number of Workers 

are assigned to different subshards. Next, we select 
the 1st node from the remaining part of the XW and 

place it in a subshard with the currently smaller 

number of Workers (or in the 1-st if they are equal). 

Repeat the last step until the end of the list XW. 
Moreover, even nodes that are not members of a 

given shard can independently determine the 

composition of new subshards.  
Let us now move on to the issue of the 

distribution of smart contracts among shards during 

their deployments. In this case, we will take the 
computational load as a basis. A smart contract or 

embedded token is randomly distributed into one of 

the existing shards based on the hash of the 

transaction of its creation, and the hash of the block 
in which it is published. The probability of getting 

into the i-th shard is inversely proportional to its total 

gas consumption Gi for the last reporting period.  
The selection algorithm is similar to that 

described above with 

 

In addition, if the user has previously placed any 

contract or token, then he can indicate by himself that 

the new one should be placed in the same shard, and 

in the future when this shard is divided, both will 
always remain in the same subshard. For example, 

the user first created a token T1, and then, when 

creating another token T2, specified that it should be 
“connected” to T1. Consequently, both tokens will 

always be processed in the same shard. This is done 

for the convenience of DApp developers and to 
reduce intershard interactions, since the operation of 

a DApp may require several smart contracts 

interacting with each other. 
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Fig. 6. Deciding on splitting or merging shards 
Source: compiled by the authors

Regarding the distribution of smart contracts 

among shards during a shard split, it follows a 

process similar to the distribution of Workers. 
Specifically, an ordered list consisting of both 

individual smart contracts alongside embedded 

tokens and their “related” groups within a shard is 

split into segments using a similar algorithm, taking 
into account their gas consumption. These groups are 

then entirely moved to one of the subshards, ensuring 

the continuity of their intragroup interactions. 
Hierarchical Structure. In the future, with a 

significant increase in the number of subshards of the 

Root Network, the split will occur with the addition 
of new levels using the so-called fractal approach. 

Let us explain the procedure for creating a new level 

using the following example. Let’s assume that shard 

3 is to be split into two shards, 4 and 5. This can be 
done as described above, forming two new subshards 

instead of one shard 2 (Fig. 7, the left panel). 

However, adding new shards increases the load on 
the Root Network and therefore this approach has 

limitations. At that point, shard 2 itself begins to 

work similarly to the Root Network, and shards 4 

and 5 become its descendants (Fig. 7, the right 
panel). 

When splitting a shard to create a new level, 

only the node’s Worker-organizer remains in the 
shard-ancestor, while the rest, along with the 

organizer, are distributed among one of the shard-

descendants. For example, in the scenario depicted 
on the right panel in Fig. 7, there are four possible 

situations: the Worker-organizer operates in one of 

the chains of shards 0-1, 0-2, 0-3-4, or 0-3-5, while 

all its nodemates are in only 1, 2, 4, or 5, 

respectively.  
In this example, when on-boarding a new node, 

as described above, its Worker-organizer can also be 

distributed among one of the 4 chains of shards with 

a probability inversely proportional to the number of 
existing Workers in shards 1, 2, 4, and 5. 

Therefore, the fractal structure provides 

exponential growth in the number of supported 
shards that allows for virtually unlimited sharding. 

An example of the resulting structure can be seen in 

Fig. 8. Note that each line in Fig. 8 is a shard ledger 
represented in Fig. 2. The definition of specific 

conditions under which separation occurs with a 

transition to a new tier will be determined after the 

implementation of the first stage/level. In addition, 
such a hierarchical system facilitates the creation of 

heterogeneous shards. In this case, a shard with a 

specific specification and/or theme is connected 
directly to the Root Network and, in case of its 

splitting, new subshards are automatically created at 

the lower level, without increasing the overall load 

on the Root Network. 

TRANSACTION ROUTING 

When partitioning a large number of nodes into 

shards, a challenge emerges as transactions can enter 
the network through any node but are processed by 

only a specific subset of nodes. Naturally, the 

problem of optimal routing of a transaction arises.  
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Fig. 7. Two ways of creating new shards 
               Source: compiled by the authors 

Fig. 8. Structure of the Waterfall’s network ledger 
Source: compiled by the authors 

This involves directing it through an arbitrary 

node to reach the maximum possible number of 

nodes within the target shard (ideally all) while 

minimizing its impact on extraneous nodes. In Fig. 
9, we observe an illustration of the optimal method 

for propagating a transaction in such a scenario. 

The construction of such an optimal route can 
only be assured at any point in time in problems 

with complete information, when each node knows 

the current neighbors of all other nodes, i.e. the 
complete graph of connections is known. In real 

applications, a node typically has awareness limited 

to a specific (usually fixed) number of nodes (see, 

for example, the Kademlia protocol [26]) and does 
not know the neighbors of other nodes. However, 

the protocol guarantees finding the required node in 

a limited number of requests, which means that the 
system can adapt to the statistical characteristics of 

requests and automatically solve the problem of 

acceptable routing with a small number of shards. 
Essentially, upon receiving a “foreign” transaction, 

each node searches in its directory for a certain 

number of nodes of the target shard. If the required 

number of nodes is found, the transaction is 

transferred. Otherwise, if such nodes are not found, a 
required number of random nodes of the target shard 

is selected, and requests are sent to neighbors to 

search for them. Since the query results are hashed, 
further access to this shard is not a problem for a 

certain period. 

Nevertheless, this strategy falls short in 
addressing the issue when there are a large number 

of shards. The constrained memory capacity for 

retaining neighbors leads to the constant deletion of 

recently found nodes of the subsequent shard. The 
hierarchical organization of shards (vertical 

sharding) solves this problem, under the condition 

that there are approximately 10 shards at one level, 
since the nodes will remember 4-5 nodes from each 

shard. 
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Fig. 9. The ideal routing of transactions 
Source: compiled by the authors 

In addition, the complexity of this issue is 

further compounded by its massiveness. Considering 

that wallets can connect to arbitrary nodes (as is 

commonly the case), it results in the majority of 
transactions initially entering the network through 

nodes that are not part of the shard responsible for 

processing them.  
Thus, the problem primarily comes down to 

ensuring that a sufficient number of nodes within the 

target shard receive the transaction.  

To achieve this, it is necessary to solve the 
problem of intershard node search, which is divided 

into the following parts: 

1) search for the shard in the shard hierarchy; 
2) search for the public key of the Workers of 

the target shard;  

3) search for the Worker’s address using its 
public key. 

The first problem can be solved by domain 

identification of shards within a hierarchical sharding 

framework. In the shard identifier, we will indicate 
the shard number and all its shard-ancestors. Then 

the path from the Root Network to the target shard 

will be obvious. 

To address the second issue, it will be necessary 

for Workers to be aware of the public keys of: 
1) all Workers within their own shard; 

2) several Workers from each descendant shard 

(if any);  
3) several Workers from the ancestor shard (if 

any). 

Therefore, by combining these requirements 

with domain identification of shards, we will always 
know a few nodes to refer to for continued searching 

through the shard tree. 

The third problem, taking into account the 
reservations made above, is solved by Kademlia. In 

this case, it is necessary to supplement the Kademlia 

address table with the identifiers of the shards to 
which they belong. This approach allows us to 

completely solve the problem of searching for nodes, 

providing instantaneous access to recently requested 

nodes. 
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SHARD TAKEOVER ATTACK 

The potential for a shard takeover attack arises 

when a well-resourced adversary compromises the 

consensus mechanism by filling the shard with its 
Workers [21]. Once the adversary achieves control 

over one-third of the Workers, it possesses the 

capability to halt the shard. If control extends to two-

thirds of the Workers, it can manipulate transactions 
within the shard, including double-spend and 

censorship. Moreover, the adversary can also disrupt 

the communication and coordination among different 
shards, potentially propagating the attack to other 

shards. Therefore, sharded networks must design 

effective mechanisms to mitigate these attacks, such 
as randomizing allocation and balancing shard size. 

In particular, based on the results obtained in this 

section, the value Wmin considered above can be 

determined. 
Case of Shard Splitting. Let’s consider a 

scenario where a shard needs to be divided into two 

separate shards. According to the consensus 
protocol, the share of faulty Workers, denoted as f, 

should not exceed one-third of their total number 

[5]. However, ensuring this condition in the original 

shard with f > 1/6 does not automatically guarantee 
that in each of the formed subshards the share of 

faulty nodes will also be less than one-third. We will 

calculate the probability that, for a given f, at least 
one subshard will consist of one-third or more faulty 

nodes.  

Let us introduce the following notation: 
– f – share of faulty nodes in the original shard; 

– N0 = N1 = N/2 – number of nodes in each subshard; 

– N = N0 + N1 – number of nodes in the original 

shard; 
– F0 – number of faulty nodes in the first subshard; 

– F1 – number of faulty nodes in the second 

subshard; 
– F = F0 + F1 = fN – number of faulty nodes in the 

original shard. 

Then, we can write the condition of faultless 
shard splitting as follows 

 
1 1

0,1  .
3 6

i ii F N N   

 
Using the equality fN = F0 + F1, we obtain that 

this condition is equivalent to the following 

 
1 1 1

0,1  .
6 3 6

ii N f N N
 

     
   

Therefore, we need to consider further only the 

value of 1/6 < f < 1/3 for which, after division, the 

shards may turn out to be both fair and foul. The 
options for distributing faulty nodes across 

subshards will be 2F = 2Nf. Of this number, these 

outcomes for which the condition above is met will 
be successful.  

Their quantity can be found using the formula: 

/6 1

( 1/6) 1

.
N
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t Nf
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n C
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This allows us to assess the likelihood of 

favorable and unfavorable outcomes:  
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Where pf  is the probability that at least one of 

the resulting subshards becomes faulty after the 
split, pt is the probability that all resulting subshards 

remain correct (i.e., free of majority-faulty nodes) 

Let’s examine the graphs of this function 
(Fig. 10). We will plot the probability of at least one 

of the resulting subshards being faulty on the 

vertical axis. On the horizontal axis, we will depict 
the number of nodes in the original shard and the 

share of faulty ones among them. 

As we see, as the share of faulty nodes 

approaches 1/3, the probability of a successful shard 
split decreases noticeably. Of practical interest is 

mainly the situation with the share of faulty nodes 

less than 20 % and several hundred nodes in the 
target shard. In this case, the probability of success 

can be considered acceptable. For large shards with 

several thousand nodes, a share of faulty ones of up 
to 25 % can be considered acceptable. If the share of 

faulty nodes approaches 30%, one can count on the 

successful division of the shard only with the 

number of nodes measured in tens of thousands. 
Case of Shard Onboarding. Let’s consider the 

problem of estimating the probability p of the 

formation of a faulty shard of a given size, which is 
composed of Workers with a given probability of 

faultiness. Suppose the probability of faultiness for 

any randomly chosen Worker is pfaulty. (uniform 

across all Workers), and the shard should consist of 
n Workers. Let’s calculate the probability that the 

share of faulty Workers, where A is the number of 

faulty ones, will exceed a certain threshold value q = 
1/3 at which the shard is considered to be faulty and 

cannot fully work. 
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Fig. 10. The faulty subshard probability 
                Source: compiled by the authors  

Let qfaulty = 1 − pfaulty. Without loss of generality, 

we can assume that the number of Workers will be 
selected for which the inequality is satisfied: 

n · pfaulty · qfaulty > 10.  

Then we can use Laplace’s integral theorem: 

   
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Fig. 11 illustrates that it is feasible to establish a 
properly functioning shard with 100 or more 

Workers if the probability of incoming faulty nodes 

is below 1/3. Obviously, if the probability of new 

nodes being faulty is 1/3, then the probability of 
creating a functional shard will be equal to 1/2 for 

any sufficiently large shard. Conversely, 

computations indicate that creating a functional 
shard with a size of 100 or more Workers becomes 

nearly impossible when the probability of incoming 

faulty nodes is around 1/2. 
Let’s imagine that we are ready to accept some 

very insignificant probability of a faulty shard 

occurring. Then Fig. 12 will allow one to choose the 

appropriate shard size for any probability of faulty 

nodes appearing (but no more than 1/3). For 
example, if the estimated probability of a faulty 

Worker appearing is 0.25 and we are willing to put 

up with the probability of a faulty shard appearing 

no more than 10−15, then we will have to create 
shards of at least 1,000 Workers in size, which is 

quite acceptable. A smaller number of Workers is 

also not justified from the point of view of the 
tokenomics of the platform [19], since in this case, a 

relatively small total stake reduces the level of shard 

security. 
Additional Security Considerations. While 

this work focuses on the scalability aspects of 

sharding within the Waterfall platform, it is 

important to acknowledge other potential vectors of 
attack that may affect the security of the system. 

 In addition to shard takeover threats, the 

following scenarios are worth considering: 

 Cross-shard replay attacks, where the same 
transaction may be reused maliciously in different 

shards without proper validation safeguards. 

 Denial of service (DoS) by flooding multiple 

shards with high-frequency intershard transactions, 
aiming to exhaust network or computational 

resources. 
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Fig. 11. The faulty shard probability  
Source: compiled by the authors 

 

 

Fig. 12. Probability of occurrence of a faulty shard  
Source: compiled by the authors
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 Manipulation of shard assignment, 

especially during node onboarding or smart contract 

deployment, by adversaries attempting to 

concentrate influence within specific shards. 

 Inconsistent state propagation, which may 
arise from latency in intershard communication and 

lead to temporary disagreements in network state. 

These aspects are part of a broader security 
framework that is being developed in parallel and 

will be discussed in a dedicated publication. The 

present paper is limited to scalability-centric 
considerations but aims to remain compatible with 

robust security assumptions. 

CONCLUSION 

Distributed Ledger Technologies (DLTs) offer 
transformative potential across a wide range of 

industries. However, they continue to face 

fundamental architectural challenges, particularly in 
achieving scalability without compromising 

decentralization and security – the so-called 

blockchain trilemma. In practice, this often results in 
a trade-off between scalability and decentralization. 

In this work, we proposed and detailed a 

hierarchical sharding architecture tailored for the 

Waterfall platform, a blockDAG-based DLT with a 
hybrid PoS coordination mechanism. The proposed 

sharding model reduces the overall system load by 

distributing transaction processing, smart contract 
execution, ledger storage, and network traffic across 

dynamically managed shards. This design builds 

upon previously implemented subnetwork and Light 

Worker mechanisms, creating a synergistic 
ecosystem capable of scalable and sustainable 

growth. 

The practical viability of our approach has been 
demonstrated in the Waterfall public mainnet. The 

Main Shard successfully sustained a transaction 

throughput of 12,693 transactions per second (TPS) 
under synthetic load conditions without performance 

degradation. Simulation experiments confirmed the 

correctness of shard splitting and merging 

procedures, ensured consistent state convergence, 
and validated our transaction routing strategy based 

on adaptive memory and probabilistic node 

discovery. Furthermore, the probabilistic algorithms 
for allocating Workers and smart contracts were 

shown to achieve near-uniform distribution and resist 

adversarial manipulation. 
Security aspects were also considered. We 

provided a quantitative analysis of shard takeover 

attacks, determining thresholds for the number of 

malicious nodes that could compromise a shard. 

Based on this, we proposed safe shard sizing 

parameters, taking into account acceptable risk 

probabilities and validator distributions. For instance, 
assuming that no more than 25 % of Workers may 

behave maliciously, our model indicates that a shard 

size of approximately 1,000 nodes is required to 
reduce the probability of a successful takeover attack 

below 10−6. The corresponding analysis, including 

the formal model and simulation results, is presented 
in Section “Shard Takeover Attack” and illustrated 

in Fig. 7. 

The proposed architecture enables the formation 

of a theoretically unlimited number of heterogeneous 
shards, including application-specific shards with 

custom logic and governance models. This flexibility 

makes the Waterfall platform highly adaptable to 
enterprise and sectoral needs, paving the way for 

decentralized infrastructures in finance, gaming, 

healthcare, and beyond. 
Looking forward, the high-level sharding 

framework presented here must be implemented and 

fine-tuned at the network protocol level. 

Additionally, intra- and inter-shard interactions 
should be governed by the platform’s tokenomics 

model, ensuring appropriate incentives, economic 

sustainability, and operational security. 
In addition to practical implementation results, 

this work offers a set of novel scientific contributions 

that advance the current state of distributed ledger 

scalability. The main innovations introduced in this 
research include. 

1. Fractal hierarchical sharding model. We 

introduce a multi-level sharding architecture with 
fractal structure, enabling theoretically unlimited 

scalability without overloading the coordination 

layer. Unlike traditional flat sharding schemes, each 
shard can act as a root for its own descendants, 

maintaining decentralization and minimizing 

overhead. 

2. Probabilistic self-balancing allocation 
algorithm. A novel method for assigning Workers 

and smart contracts to shards is proposed. It ensures 

statistical load balancing based on inverse-
proportional distribution (to shard size or gas usage) 

and provides resistance to targeted collusion attacks 

by randomizing placement. 
3. Integration of Light Workers with 

subnetworked DAG shards. The paper extends the 

Waterfall platform architecture by combining DAG-

based shard ledgers with lightweight validator nodes, 
allowing nodes with limited computational resources 

to participate fully in transaction validation without 

storing the entire ledger. 
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4. Quantitative shard takeover probability 

modeling. We present a mathematical model to 

estimate the probability of forming a faulty shard 
during splitting or onboarding, based on the assumed 

share of malicious nodes. This yields concrete 

recommendations for minimum shard size to 
maintain consensus integrity under probabilistic 

assumptions. 

5. Efficient transaction routing in hierarchical 
shard trees. A transaction routing mechanism is 

designed for large-scale sharded systems with limited 

peer knowledge. It combines hierarchical shard 

identifiers with enhanced Kademlia-based node 
discovery, ensuring reliable delivery even with many 

shards and partial topology visibility. 

These contributions form the foundation for a 
scalable, secure, and adaptable DLT architecture 

applicable to a broad range of decentralized systems 

and enterprise-grade blockchain infrastructures. 
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АНОТАЦІЯ 

У роботі представлено підхід до масштабування децентралізованої платформи смарт-контрактів Waterfall, заснований 
на концепції ієрархічного фрактального шардингу. Незважаючи на потенціал технології розподіленого реєстру, її широке 
впровадження стримується проблемами масштабованості — зокрема, неможливістю пропорційно збільшувати пропускну 
здатність мережі із зростанням кількості учасників без шкоди для безпеки або децентралізації. Запропонована архітектура 

зменшує обчислювальне та мережеве навантаження шляхом розподілу транзакцій, смарт-контрактів та станів між фрактально 
організованими шардами, кожен з яких функціонує як орієнтований ациклічний граф. Це дозволяє залучати вузли з 
обмеженими ресурсами та досягати масштабованості не лише на рівні всієї системи, але й у її компонентах. У роботі описано 
механізми поділу та злиття шардів, маршрутизації транзакцій, динамічного розміщення смарт-контрактів, а також імовірнісну 
модель для оцінки ризику атаки на окремий шард. Проведено моделювання та представлено рекомендації щодо параметрів 
безпечного розміру шардів. Хоча розробка здійснювалась спеціально для платформи Waterfall, загальна концепція 
фрактального ієрархічного шардингу, а також її окремі компоненти, можуть бути адаптовані до інших блокчейн-систем, 
зокрема з модульною архітектурою або архітектурою, побудованою на основі орієнтованого ациклічного графа. 
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