
Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 67

DOI: https://doi.org/10.15276/hait.08.2025.5

UDС 004.922

Virtually unlimited sharding for scalable

distributed ledgers

Sergii S. Grybniak1)

ORCID: https://orcid.org/0000-0001-6817-8057; s.s.grybniak@op.edu.ua. Scopus Author ID: 57962557300

Yevhen Yu. Leonchyk2)

ORCID: https://orcid.org/0000-0003-1494-0741; leonchyk@onu.edu.ua. Scopus Author ID: 57192064365

Igor Ye. Mazurok3)

ORCID: https://orcid.org/0000-0002-6658-5262; mazurok@onu.edu.ua. Scopus Author ID: 57210121184

Oleksandr S. Nashyvan1)

ORCID: https://orcid.org/0000-0001-8281-4849; o.nashyvan@op.edu.ua. Scopus Author ID: 57963260000

Ruslan V. Shanin2)

ORCID: http://orcid.org/0000-0002-4414-1126; ruslanshanin@onu.edu.ua. Scopus Author ID: 55983005400

Alisa Yu. Vorokhta4)

ORCID: https://orcid.org/0000-0002-2790-1517; alisa.vorokhta@uni.lu. Scopus Author ID: 59184524100
1) Odesa National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

2) Odesa I. I. Mechnikov National University, 2, Dvoryanskaya Str. Odessa, 65082, Ukraine
3) Waterfall DAO, Zug, Switzerland

4) University of Luxembourg, 2, Ave. de l'Université Esch-sur-Alzette, 4365, Luxembourg

ABSTRACT

This paper presents an approach to improving the scalability of the decentralized smart contract platform Waterfall, based on the

concept of hierarchical fractal sharding. Although distributed ledger technology holds significant promise for building secure and
transparent digital ecosystems, its widespread adoption remains limited by scalability issues. A key challenge lies in the inability to
proportionally increase transaction throughput with the growing number of participants without undermining either decentralization or
security. The proposed solution reduces both computational and communication loads by distributing transactions, smart contracts, and
network state across a system of recursively structured shards. Each shard operates as an independently validated subnetwork
organized as a directed acyclic graph structure that supports asynchronous execution and consensus. This design enables the
participation of low-power nodes, enhances load balancing, and achieves scalability not only at the level of the entire network but also
within its internal components. The study details the mechanisms for shard formation and merging, transaction routing strategies, and

dynamic placement of smart contracts. In addition, a probabilistic model is introduced to evaluate the risk of malicious capture of
individual shards, and guidelines are provided for choosing safe shard sizes under various threat assumptions. While the proposed
architecture is designed specifically for the Waterfall platform, its core principles and several of its methods may be adapted to other
distributed ledger systems, including but not limited to blockchain-based platforms, particularly those employing modular or directed
acyclic graph-structured architectures.

Keywords: Fractal sharding; smart contracts; blockchain scalability; distributed ledger; hierarchical architecture

For citation: Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu. “Virtually unlimited

sharding for scalable distributed ledgers”. Herald of Advanced Information Technology. 2025; Vol. 8 No.1: 67–86.

DOI: https://doi.org/10.15276/hait.08.2025.5

INTRODUCTION

Distributed Ledger Technology (DLT) has

emerged as a promising innovation that has the

potential to transform various industries [39]. DLT is

a decentralized system that enables secure and
transparent transactions without the need for

intermediaries such as banks or government entities.

The technology is based on a distributed database
that stores information across a network of nodes,

where each node has a copy of the database.

© Grybniak S., Leonchyk Ye., Mazurok I.,

 Nashyvan O., Shanin R., Vorokhta A., 2025

This feature ensures that no single entity
controls the data, and any changes to the database are

validated through network consensus. One of the

most prominent types of DLT is blockchain, which

uses cryptographic algorithms to ensure data integrity
and security [47]. Blockchain technology has gained

traction in recent years, with many industries

exploring its applications — particularly in
Decentralized Finance (DeFi) [35].

Vitalik Buterin formulated [20] the so-called

blockchain trilemma: of the three core attributes –

decentralization, security, and scalability – a
blockchain can typically achieve only two

simultaneously. Since decentralization is intrinsic

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

mailto:nosachenko.bogdan@gmail.com
http://orcid.org/0000-0002-4078-3519

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

68 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

to DLT, and adequate security is essential for any
practical deployment, scalability is often
compromised. For example, the average transaction

throughput of Bitcoin and Ethereum is currently
limited to 11 and 63 transactions per second (TPS),
respectively [7], whereas centralized payment
systems such as VISA routinely process thousands

of TPS (e.g., about 7,400 TPS on average
in 2024 [43]).

This limitation stems from consensus protocols

that require every node to validate each transaction,
leading to significant processing bottlenecks [41].
As DLT adoption grows, solving the scalability
challenge becomes increasingly critical. While

numerous approaches have been proposed, each with
its own strengths and trade-offs, achieving a
practical balance between scalability, security, and
decentralization remains an open problem.

Although scalability is widely recognized as a
key challenge, the core issue lies in the inability of

current DLT systems to scale performance
proportionally with network size. In traditional

blockchain and directed acyclic graph (DAG) based
architectures, all nodes must execute every smart
contract and store the complete ledger and state. As

a result, increasing the number of nodes leads to
linear or super-linear growth in computational and
storage requirements — without any corresponding
increase in transaction throughput.

The problem addressed in this work is how

to enable a distributed ledger platform to scale its

processing throughput and reduce resource

consumption as the number of participating

nodes increases. This includes minimizing
redundant execution of transactions and unnecessary
replication of data across the network, while
preserving security and decentralization.

This work addresses this inefficiency by
proposing a novel hierarchical sharding technique
designed to enable proportional performance

scaling. The approach involves distributing

transaction execution and smart contract processing
among multiple shards, and decentralizing storage of
ledger and state data using an optimal replication

coefficient. We implement this approach on the
Waterfall platform, which combines a DAG-based
ledger with a Proof-of-Stake coordination layer, and
show that our method achieves scalable, efficient,

and decentralized transaction processing.

RELATED WORKS

Various solutions have been proposed to
address the scalability issue, including off-chain

payment channels, diverse consensus algorithm

optimizations, numerous sharding approaches, etc.
Off-chain solutions such as Lightning [33] and
Plasma [32] allow transactions to be processed

outside the main blockchain, reducing congestion on
the main chain. Consensus algorithm optimizations
and new types of protocols, e.g. Proof-of-Stake [30],
increase the speed of transaction processing while

also reducing the node load and overall energy
consumption.

Sharding (vertical and horizontal) is a well-

established technique in database management
systems. It entails splitting a ledger to solve the
problem of scaling. In decentralized systems,
sharding involves partitioning a set of nodes into

groups (so-called shards) with or without
appropriate ledger partitioning [9, 17], [46]. Each of
the shards can handle a subset of transactions,
thereby increasing the overall transaction

throughput. A detailed review of sharding-based
scaling methods is presented in e.g. [45]. There are a
few main objects that can be split: network actors
(validators, wallets, etc.), transactions, and the

network state. If only one set of nodes is partitioned,
this is done to speed up consensus and reduce the
amount of associated communication. If the sharding

of nodes is performed simultaneously with the
sharding of the state and the ledger (each shard leads
its own portion of data), then with a significant
reduction of network load, we get the problem of

shard matching coordinating, which can be solved
synchronously or asynchronously. In the first case,
the validators of both shards work together, and in
the second case, transactions are separately executed

in the shards that they affect, but a confirmation
mechanism is required. Most existing cross-shard
transaction processing solutions are based on the
two-phase commit (2PC) protocol, which contains a

prepare phase and a commit phase [10, 25]. In
addition, the implementation of cross-shard
execution of smart contracts is a particular challenge
that is presently under active investigation,

especially for the Ethereum Virtual Machine case
(e.g. [8, 34]).

The sharding issue remains a complex and

ongoing problem of DLT, requiring substantial
scientific efforts from the community of researchers,
and at present, proposed approaches have substantial
concessions. For example, Ethereum 2.0 introduces

significant simplifications in its sharding design, so-
called Danksharding, compared to its previous
approach of splitting only the ledger containing
ordinary transactions [12]. The Open Network

(TON) presents a multichain system supporting both
homogeneous and heterogeneous shards with fast-

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 69

forwarding messages between them [11]. Its
distinctive feature is the automatic change in the
number of shards, depending on the network load.

However, finalized blocks are not immutable and
can be further reorganized. In addition, a modified
Byzantine fault tolerance consensus protocol [28]
used by TON can effectively handle relatively small

(not more than a few hundred) numbers of validators
that impose certain restrictions on the system’s
decentralization. A similar dynamic approach for

shard reorganizing (Adaptive State Sharding) is
presented by MultiverseX [29]. It improves overall
security, in particular, preventing conspiracy in a
shard and other attacks associated with a relatively

small number of validators. However, shard
reorganizing demand itself creates additional
network load and demands extra communication
overheads. This limitation becomes more and more

significant as both network validators and wallets
grow. Also, some platforms propose only
computational scalability, e.g. Venom [42] and
Everscale [14] divide the execution of smart

contracts into threads that are processed by different
groups of validators in parallel.

Another approach to the implementation of

scaling is the creation of so-called sidechains, L2s,
etc. [1, 13, 36] with their own digital assets
(including their own coins), different formats of
transactions, network protocols, architecture, etc.

Each sidechain is attached to its main blockchain
and operates parallel to it. At the moment, one of the
most popular Bitcoin-based sidechains is the Liquid
Network [24] and Polygon is a popular Ethereum-

based sidechain [31].
This approach enables the transfer of assets

from the main blockchain to the sidechain, where
they can be processed in a more efficient and

flexible manner. However, despite their potential
benefits, there are still several challenges that need
to be addressed before sidechains can be widely
adopted. One of the main goals is to ensure the

security and integrity of the sidechain, as any
vulnerabilities or weaknesses in the sidechain can
potentially compromise the entire blockchain

system. Another problem is ensuring the
interoperability between different sidechains and the
main blockchain, which requires the development of
robust protocols and standards.

One of the most promising and actively
developing approaches for providing a connection
between sidechains and the main network is Zero
Knowledge (ZK) rollups [40], which can also

improve the security and finality of transactions, as

they do not rely on fraud proofs or challenge periods
that are used by other rollup variants. This technique
aggregates transactions into batches and generates

ZK proofs for each batch. ZK rollups can reduce the
amount of data that needs to be stored on the main
blockchain, as well as the cost of validating
transactions. In addition, ZK proofs can be used to

shard smart contracts [27], ensure data availability in
shards [12], and mitigate other blockchain security
and scalability issues [38].

The evolution of the sidechain mechanism is
fractal scaling that allows the creation of various
subnetworks with unique settings. For example, the
Ethereum sidechain StarkWare [22] uses its own

sidechains (sub-sidechain) to implement
customizable functionality. For the same purposes,
in Kaspa [23], some nodes can be grouped into
application-specific clusters with specific rules, but

such partial nodes cannot produce blocks because
they do not have complete information in contrast to
full nodes. Currently, the development of scalable
networks with custom features has gained significant

traction and it is considered one of the crucial factors
for the mass adoption of DLTs in enterprise-class
applications.

Other notable projects include NEAR network
protocol [37], which implements dynamic state
sharding through its Nightshade architecture,
enabling asynchronous cross-shard execution with

delayed finality; and Internet Computer DFinity
project [6], which introduces a canister-based model
for parallel computation and storage across subnets,
effectively acting as an application-oriented form of

sharding. These platforms offer innovative
approaches to scalability and decentralization, and
are included in the comparative analysis in the table
below.

To enhance clarity and facilitate comparison,
we summarize in the table below the key charac-
teristics of several prominent distributed ledger
platforms that employ sharding. Each platform is

evaluated according to its sharding type, ability to
support cross-shard transactions, scalability,
decentralization, and known limitations. This

comparative overview contextualizes our approach
and highlights its advantages over existing solutions.

The Waterfall platform introduces a fractal
hierarchical sharding model that addresses the

limitations identified in other systems, particularly
by offering virtually unlimited scalability, dynamic
reconfiguration, and fully integrated support for
cross-shard transactions without relying on

centralized coordinators.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

70 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Table 1. Comparative Analysis of Sharding Approaches

Platform Sharding

Type

Cross-shard

Tx Support

Dynamic

Scaling

Decentralization Key Limitations

Ethereum
2.0

Static

execution

shards

Limited (via

Beacon Chain)

No High Still under full

deployment, limited

shard communication

NEAR Dynamic
state sharding

Supported with
asynchronous

execution

Yes Medium Complex routing and
state synchronization

Polkadot Relay-chain
parachains

Via relay-chain Limited Medium-High Coordination
overhead, limited

parallelism

DFinity Canister-

based
sharding

Yes (via

routing)

Moderate High Protocol complexity,

high validator
requirement

Avalanche Subnetworks Yes (via

Avalanche

Warp
Messaging)

Yes

(independent

subnets)

Medium Subnet isolation,

requires bridging

Waterfall
(proposed)

Hierarchical

fractal
sharding

Fully supported

via DAG and
routing

Virtually

unlimited

High Currently in testnet

phase, tokenomics
under design

Source: compiled by the authors

WATERFALL PLATFORM OVERVIEW

The scalability approach proposed in this work

is designed specifically for the Waterfall platform.

Therefore, before introducing the sharding model
itself, it is essential to present the key components

and operational principles of the platform. This

section provides the necessary architectural context
for the subsequent sections, where the sharding

solution will be developed and integrated.

The Waterfall distributed protocol is based on

Directed Acyclic Graph (DAG) technology, with the
Salto Collores consensus [18] supported by the Salto

Collazo tokenomic model [16, 19] involving the

participation of millions of nodes. The efficiency of
this platform is dependent on successful

collaboration between the Coordinating network and

shard networks, which work in parallel to achieve a
high transaction throughput [15]. Every system

Worker has two essential components: the

Coordinator and the Validator, both playing key roles

within their respective networks (Fig. 1). Also, there
are Light Workers on the Waterfall platform [3] that

do not store the ledger, but store the entire network

state. The implementation of the Waterfall platform
provides for the possibility of deploying several

autonomous Workers on each node, with a common

ledger and a pool of transactions. In this case, the

first of them is considered the organizer of such a
node.

In a shard network, all received transactions are
first added to its DAG-based ledger and are applied

to alter the network state only after they are finalized

[5]. A registry of Validators is responsible for
assigning block producers in each slot at the start of

each epoch. The Coordinating network handles the

crucial tasks of linearizing (ordering) and finalizing
shard ledgers, thereby enhancing security and

synchronization across the platform. This network

also holds information about the approved blocks

generated on shard networks.
The prime goal of the Waterfall platform is to

provide an efficient and favorable ecosystem for the

development of various decentralized applications
(DApps) using smart contracts and tokens. There are

embedded tokens (including NFTs) in this network

that do not demand special smart contracts to release
and maintain them, but are carried out with ordinary

transactions that significantly reduce overhead

charges. In addition, this makes their usage more

accessible to a wide range of users.
With Waterfall, a specially developed

subnetwork technology ensures scalability in terms

of transaction processing capacity within the shard
networks; in other words, it provides horizontal

sharding [2, 4]. A transaction pool, the set of valid

pending transactions to be recorded in blocks, is split

between network Validators by applying a
hierarchical and graph-based clustering algorithm.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 71

Fig. 1. Architecture of Waterfall’s nodes and Workers

Source: compiled by the authors

However, all Validators of a shard network have
the same ledger and the same general state of
processing of all finalized blocks. Thus, as the
number of Validators and transactions grows, the
number of blocks in each slot will also increase.
Although subnetworks parallelize the validation of
transactions and their inclusion in blocks, further
processing of blocks to include them in the ledger
and change the current state is performed by the
nodes of all subnetworks.

Hence, the main tasks to be solved by sharding
are to reduce the node load on:
1) execution of finalized transactions;
2) execution of smart contracts;
3) storing the network state and the ledger;
4) transmission of network traffic.

This article describes the first of two stages of
the Waterfall virtually unlimited sharding.

1. Homogeneous shards consist of
approximately the same number of Workers and
distribute the total workload into approximately
equal parts. They are created in such a way as to
minimize the number of cross-shard transactions.
Our goal is to group network users (network wallets
and smart contracts) so that they communicate
mostly within shards, since the intensity of cross-
shard activity reduces the efficiency of the entire
network.

2. Heterogeneous shards are built according to
their principles and can even be developed by a third
party interacting with others based on common
requirements and an interface. For example, there
may be dedicated shards for decentralized finance,

web3 games, e-voting services, electronic medical
screening systems, etc. However, dividing users into
shards that are relatively closed in terms of activities
not only reduces the overall load on network nodes,
but also opens up new opportunities for intra-shard
interactions.

Currently, the main public network of the
Waterfall [44] project operates with over 42,000
active validators and demonstrates a transaction
throughput exceeding 12,000 transactions per second
under real-world conditions.

This architectural overview serves as the
foundation for the sharding model proposed in this
work. Since the solution is tightly integrated with the
internal mechanisms of the Waterfall platform,
understanding these components is essential.
Nevertheless, the general structure of our model is
sufficiently abstract to allow potential adaptation to
other platforms that share architectural similarities,
particularly those with modular consensus or DAG-
based data structures.

SHARD DESIGN

Shard Ledger. In broad terms, the shard ledger is
a heterogeneous DAG. Its vertices are blocks, with
some containing transactions and others serving as
blocks in the chain to achieve consensus. In addition,
this DAG has an initial genesis block that establishes
the network’s rules. In practical terms, the Waterfall
DAG is implemented as two separate entities with
different genesis blocks, block structures, and,
formally, block creators: Coordinators and Validators
(Fig. 2).

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

72 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

.

Fig. 2. Structure of a shard ledger
Source: compiled by the authors

As we move towards sharding, we preserve this
outlined structure for each shard. Further, the initial

blocks of a new shard will also, if needed, refer to the

blocks of the shard(s) that created it.
Procedures for Splitting and Merging. First,

we will describe the procedures for splitting and

merging shards, and then we will consider when the

network performs these actions. Initially, the
Waterfall network operates without shards.

Consequently, when the network is first split into

shards, the Root Network and two additional shard-
descendants are created (Fig. 3). The Root Network

continues the initial network and is designed to work

only with inherent coins. All smart contracts and

tokens are distributed among the shard-descendants,
which are subsequently responsible for working with

smart contracts and tokens.

Fig. 3. The first splitting
Source: compiled by the authors

The procedure for creating these shards is as
follows.

1. Two blocks are published in the blockDAG

network, which will become the genesis blocks for

shards. These blocks contain the information
necessary for the operation of the corresponding

shards.

2. Split networks begin their work epoch after
the finalization of the genesis blocks of new shards.

3. Once sharding begins, smart contract calls
are published to the corresponding shards, and the

initial network becomes the Root Network.

4. Until the part of the Root Network
blockDAG that contains calls to smart contracts is

finalized, the states of the token shards cannot be

finalized.

5. The Worker-organizer of the node not only
remains to work in the Root Network, but is also

assigned to one of the two newly formed shards,

along with the rest of their Workers-nodemates.
Therefore, each node is represented in the Root

Network by only one of its Workers-organizers, and

all of its Workers in one of the shard-descendants.

The Root Network performs the following
functions:

1) conducts all operations with the main coin of

the network;
2) keeps records of shards, splits, and merges

them;

3) is responsible for rewarding Workers for
work in shards;

4) is responsible for on/off-boarding of Workers

in all shards;

5) is responsible for registering new smart
contracts and embedded tokens.

All coin accounts are processed in the Root

Network. Otherwise, nearly all transfers of coins and
calls of smart contracts would be intershard,

increasing network workload. At the same time,

other shards have the same structure as the original
network and additionally process a certain number of

smart contracts. Concurrently, data regarding the

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 73

average computational complexity during network
operation (represented as the average gas spent per

second over the last reporting period) is published

and signed by all shard participants, to monitor the
need to combine or merge shards.

Now we will outline the process of splitting an

arbitrary shard into two subshards. Let us consider

shard A, which we split into subshards B and C
(Fig. 4).

Fig. 4. Splitting into two subshards
Source: compiled by the authors

The procedure for this split is as follows.

1. In the Root Network, blocks are published

that will become the genesis for shards B and C.

2. Similar to the initial sharding procedure, split

networks begin their work one epoch after the

finalization of the genesis blocks of new shards.

3. Once shards B and C are operational, smart

contract calls are no longer published to shard A, but

only to the corresponding new shards.

4. Blocks in shards B and C reference the

genesis blocks of those shards and the tips (blocks

not referenced by other blocks) of shard A.

5. The non-finalized part of shard A is finalized

in both shard B and C separately, but at the same

time, each of the shards finalizes and executes only

transactions of its respective smart contracts.

Finally, let us describe the procedure for

merging shards (Fig. 5).

1. In the Root Network, a block is published

that will become the genesis for the new shard.

2. Similar to the procedure for the initial

splitting into shards, a new shard begins its work an

epoch after the finalization of its genesis block.

3. Until this time, the nodes of the merged

shards are synchronized.

4. In addition to the rules for constructing a

blockDAG, the blocks of the new shard refer to the

block tips of the shards that have merged.

5. The ordering of unfinalized blocks from old

shards is determined in the Coordinating Network of

the new shard, taking into account references to the

tips of old shards.

Note that during both the splitting and merging

processes, the resulting shards get a number through

auto-incrementation. For instance, if at the current

moment the last assigned number is N, then when

any shard is split, the resulting subshards will be

numbered as N + 1 and N + 2. Similarly, when shards

are merged, the resulting combined shard will receive

the number N + 1.

Decision on Splitting and Merging. A change

in the number of shards is usually tied to a change in

the number of transactions over a certain period (e.g.

[11, 14], [42]) and the number of Validators (e.g.

[29]).

Let us denote by G the average gas consumption

per second. This value is an integral characteristic of

the load on the Worker (its Validator component),

since it determines the volume of calculations

performed. Also, gas consumption indirectly

characterizes the average number of transactions, the

volume of transmitted messages (traffic), and the

increase in the size of the state and ledger. The

minimum recommended system requirements for the

node allow processing up to Gsup per second.

Next, we set the parameters αmin and αmax,

0 1.min max   

Fig. 5. Merging of two shards
Source: compiled by the authors

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

74 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Let us also denote Gmax = αmaxGsup,
Gmin = αminGsup. In addition, let us denote by W the

number of Workers in the shard, by Wmin the

minimum and by Wmax the maximum number of
Workers in the shard and assume that

2 , 2 , 2 ,min max min pre pre maxG G W W W W  

with some Wpre. Then the shard is split into two

subshards if

 or or .max max preW W G G W W  

We do not split a shard into two shards in the

case when G > Gmax and W ⩽ Wpre since in this case
the resulting shards will have too few Workers.

Likewise, if

 or and ,min min preW W G G W W  

then the shards are merged. Fig. 6 graphically

shows the rule for making decisions about splitting or
merging shards.

Distribution of Workers and Smart

Contracts. Let us now consider issues related to the

distribution of Workers and smart contracts among
shards. Their registration takes place in the Main

Shard. The user contributes a fixed Worker’s stake or

sends a smart contract deployment transaction with
the corresponding fee in intrinsic coins. When

creating a new node, its Worker-organizer is defined

in both the Root Shard and the shard-descendant.

Subsequent Workers of this node are placed together
with the organizer in the same shard-descendant.

During the onboarding of a Worker-organizer,

the probability of it getting into some shard is
inversely proportional to the number of Workers

already existing there. Thus, on the one hand,

uniform filling of shards is achieved, and on the other
hand, the randomness of the distribution does not

allow Workers to get into a pre-selected shard, which

mitigates any increase in the share of colluded

malicious users.
Let N shards be registered in the system at a

given time to process smart contracts or embedded

tokens, one of which can be allocated a Worker-
organizer of a node, with nk (k = 1, . . . , N) Workers.

 Let us set the probability of a new Worker

getting into i-th shard

Next, based on the hash of the public key of

Worker and the hash of the block in which it was

registered, we calculate the value A in the range from
0 (not inclusive) to 1 and recurrent with a0 = 0 we

obtain a partition of the segment [0; 1]:

Then the shard number m, into which this

Worker will be distributed, is determined from the
condition

1 .m ma A a  

Let us now describe the procedure for

distributing Workers among shards in the case of

shard splitting. Let XW be an ordered list of shard
nodes. When dividing this shard into two subshards,

the two nodes with the largest number of Workers

are assigned to different subshards. Next, we select
the 1st node from the remaining part of the XW and

place it in a subshard with the currently smaller

number of Workers (or in the 1-st if they are equal).

Repeat the last step until the end of the list XW.
Moreover, even nodes that are not members of a

given shard can independently determine the

composition of new subshards.
Let us now move on to the issue of the

distribution of smart contracts among shards during

their deployments. In this case, we will take the
computational load as a basis. A smart contract or

embedded token is randomly distributed into one of

the existing shards based on the hash of the

transaction of its creation, and the hash of the block
in which it is published. The probability of getting

into the i-th shard is inversely proportional to its total

gas consumption Gi for the last reporting period.
The selection algorithm is similar to that

described above with

In addition, if the user has previously placed any

contract or token, then he can indicate by himself that

the new one should be placed in the same shard, and

in the future when this shard is divided, both will
always remain in the same subshard. For example,

the user first created a token T1, and then, when

creating another token T2, specified that it should be
“connected” to T1. Consequently, both tokens will

always be processed in the same shard. This is done

for the convenience of DApp developers and to
reduce intershard interactions, since the operation of

a DApp may require several smart contracts

interacting with each other.

1

1

1

1
, 1,..., .

N

i k

ki

p n i N
n







 
  

 


1 , 1, . . . , .k k ka a p k N  

1

1

1

1
, 1,..., .

N

i k

ki

p G i N
G







 
  

 


Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 75

Fig. 6. Deciding on splitting or merging shards
Source: compiled by the authors

Regarding the distribution of smart contracts

among shards during a shard split, it follows a

process similar to the distribution of Workers.
Specifically, an ordered list consisting of both

individual smart contracts alongside embedded

tokens and their “related” groups within a shard is

split into segments using a similar algorithm, taking
into account their gas consumption. These groups are

then entirely moved to one of the subshards, ensuring

the continuity of their intragroup interactions.
Hierarchical Structure. In the future, with a

significant increase in the number of subshards of the

Root Network, the split will occur with the addition
of new levels using the so-called fractal approach.

Let us explain the procedure for creating a new level

using the following example. Let’s assume that shard

3 is to be split into two shards, 4 and 5. This can be
done as described above, forming two new subshards

instead of one shard 2 (Fig. 7, the left panel).

However, adding new shards increases the load on
the Root Network and therefore this approach has

limitations. At that point, shard 2 itself begins to

work similarly to the Root Network, and shards 4

and 5 become its descendants (Fig. 7, the right
panel).

When splitting a shard to create a new level,

only the node’s Worker-organizer remains in the
shard-ancestor, while the rest, along with the

organizer, are distributed among one of the shard-

descendants. For example, in the scenario depicted
on the right panel in Fig. 7, there are four possible

situations: the Worker-organizer operates in one of

the chains of shards 0-1, 0-2, 0-3-4, or 0-3-5, while

all its nodemates are in only 1, 2, 4, or 5,

respectively.
In this example, when on-boarding a new node,

as described above, its Worker-organizer can also be

distributed among one of the 4 chains of shards with

a probability inversely proportional to the number of
existing Workers in shards 1, 2, 4, and 5.

Therefore, the fractal structure provides

exponential growth in the number of supported
shards that allows for virtually unlimited sharding.

An example of the resulting structure can be seen in

Fig. 8. Note that each line in Fig. 8 is a shard ledger
represented in Fig. 2. The definition of specific

conditions under which separation occurs with a

transition to a new tier will be determined after the

implementation of the first stage/level. In addition,
such a hierarchical system facilitates the creation of

heterogeneous shards. In this case, a shard with a

specific specification and/or theme is connected
directly to the Root Network and, in case of its

splitting, new subshards are automatically created at

the lower level, without increasing the overall load

on the Root Network.

TRANSACTION ROUTING

When partitioning a large number of nodes into

shards, a challenge emerges as transactions can enter
the network through any node but are processed by

only a specific subset of nodes. Naturally, the

problem of optimal routing of a transaction arises.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

76 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Fig. 7. Two ways of creating new shards
 Source: compiled by the authors

Fig. 8. Structure of the Waterfall’s network ledger
Source: compiled by the authors

This involves directing it through an arbitrary

node to reach the maximum possible number of

nodes within the target shard (ideally all) while

minimizing its impact on extraneous nodes. In Fig.
9, we observe an illustration of the optimal method

for propagating a transaction in such a scenario.

The construction of such an optimal route can
only be assured at any point in time in problems

with complete information, when each node knows

the current neighbors of all other nodes, i.e. the
complete graph of connections is known. In real

applications, a node typically has awareness limited

to a specific (usually fixed) number of nodes (see,

for example, the Kademlia protocol [26]) and does
not know the neighbors of other nodes. However,

the protocol guarantees finding the required node in

a limited number of requests, which means that the
system can adapt to the statistical characteristics of

requests and automatically solve the problem of

acceptable routing with a small number of shards.
Essentially, upon receiving a “foreign” transaction,

each node searches in its directory for a certain

number of nodes of the target shard. If the required

number of nodes is found, the transaction is

transferred. Otherwise, if such nodes are not found, a
required number of random nodes of the target shard

is selected, and requests are sent to neighbors to

search for them. Since the query results are hashed,
further access to this shard is not a problem for a

certain period.

Nevertheless, this strategy falls short in
addressing the issue when there are a large number

of shards. The constrained memory capacity for

retaining neighbors leads to the constant deletion of

recently found nodes of the subsequent shard. The
hierarchical organization of shards (vertical

sharding) solves this problem, under the condition

that there are approximately 10 shards at one level,
since the nodes will remember 4-5 nodes from each

shard.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 77

Fig. 9. The ideal routing of transactions
Source: compiled by the authors

In addition, the complexity of this issue is

further compounded by its massiveness. Considering

that wallets can connect to arbitrary nodes (as is

commonly the case), it results in the majority of
transactions initially entering the network through

nodes that are not part of the shard responsible for

processing them.
Thus, the problem primarily comes down to

ensuring that a sufficient number of nodes within the

target shard receive the transaction.

To achieve this, it is necessary to solve the
problem of intershard node search, which is divided

into the following parts:

1) search for the shard in the shard hierarchy;
2) search for the public key of the Workers of

the target shard;

3) search for the Worker’s address using its
public key.

The first problem can be solved by domain

identification of shards within a hierarchical sharding

framework. In the shard identifier, we will indicate
the shard number and all its shard-ancestors. Then

the path from the Root Network to the target shard

will be obvious.

To address the second issue, it will be necessary

for Workers to be aware of the public keys of:
1) all Workers within their own shard;

2) several Workers from each descendant shard

(if any);
3) several Workers from the ancestor shard (if

any).

Therefore, by combining these requirements

with domain identification of shards, we will always
know a few nodes to refer to for continued searching

through the shard tree.

The third problem, taking into account the
reservations made above, is solved by Kademlia. In

this case, it is necessary to supplement the Kademlia

address table with the identifiers of the shards to
which they belong. This approach allows us to

completely solve the problem of searching for nodes,

providing instantaneous access to recently requested

nodes.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

78 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

SHARD TAKEOVER ATTACK

The potential for a shard takeover attack arises

when a well-resourced adversary compromises the

consensus mechanism by filling the shard with its
Workers [21]. Once the adversary achieves control

over one-third of the Workers, it possesses the

capability to halt the shard. If control extends to two-

thirds of the Workers, it can manipulate transactions
within the shard, including double-spend and

censorship. Moreover, the adversary can also disrupt

the communication and coordination among different
shards, potentially propagating the attack to other

shards. Therefore, sharded networks must design

effective mechanisms to mitigate these attacks, such
as randomizing allocation and balancing shard size.

In particular, based on the results obtained in this

section, the value Wmin considered above can be

determined.
Case of Shard Splitting. Let’s consider a

scenario where a shard needs to be divided into two

separate shards. According to the consensus
protocol, the share of faulty Workers, denoted as f,

should not exceed one-third of their total number

[5]. However, ensuring this condition in the original

shard with f > 1/6 does not automatically guarantee
that in each of the formed subshards the share of

faulty nodes will also be less than one-third. We will

calculate the probability that, for a given f, at least
one subshard will consist of one-third or more faulty

nodes.

Let us introduce the following notation:
– f – share of faulty nodes in the original shard;

– N0 = N1 = N/2 – number of nodes in each subshard;

– N = N0 + N1 – number of nodes in the original

shard;
– F0 – number of faulty nodes in the first subshard;

– F1 – number of faulty nodes in the second

subshard;
– F = F0 + F1 = fN – number of faulty nodes in the

original shard.

Then, we can write the condition of faultless
shard splitting as follows

 
1 1

0,1 .
3 6

i ii F N N   

Using the equality fN = F0 + F1, we obtain that

this condition is equivalent to the following

 
1 1 1

0,1 .
6 3 6

ii N f N N
 

     
 

Therefore, we need to consider further only the

value of 1/6 < f < 1/3 for which, after division, the

shards may turn out to be both fair and foul. The
options for distributing faulty nodes across

subshards will be 2F = 2Nf. Of this number, these

outcomes for which the condition above is met will
be successful.

Their quantity can be found using the formula:

/6 1

(1/6) 1

.
N

i

t Nf

i N f

n C


  

 

This allows us to assess the likelihood of

favorable and unfavorable outcomes:

/6 1

(1/6) 1

1 2 ,
N

Nf i

f Nf

i N f

p C




  

  

/6 1

(1/6) 1

2 .
N

Nf i

t Nf

i N f

p C




  

 

Where pf is the probability that at least one of

the resulting subshards becomes faulty after the
split, pt is the probability that all resulting subshards

remain correct (i.e., free of majority-faulty nodes)

Let’s examine the graphs of this function
(Fig. 10). We will plot the probability of at least one

of the resulting subshards being faulty on the

vertical axis. On the horizontal axis, we will depict
the number of nodes in the original shard and the

share of faulty ones among them.

As we see, as the share of faulty nodes

approaches 1/3, the probability of a successful shard
split decreases noticeably. Of practical interest is

mainly the situation with the share of faulty nodes

less than 20 % and several hundred nodes in the
target shard. In this case, the probability of success

can be considered acceptable. For large shards with

several thousand nodes, a share of faulty ones of up
to 25 % can be considered acceptable. If the share of

faulty nodes approaches 30%, one can count on the

successful division of the shard only with the

number of nodes measured in tens of thousands.
Case of Shard Onboarding. Let’s consider the

problem of estimating the probability p of the

formation of a faulty shard of a given size, which is
composed of Workers with a given probability of

faultiness. Suppose the probability of faultiness for

any randomly chosen Worker is pfaulty. (uniform

across all Workers), and the shard should consist of
n Workers. Let’s calculate the probability that the

share of faulty Workers, where A is the number of

faulty ones, will exceed a certain threshold value q =
1/3 at which the shard is considered to be faulty and

cannot fully work.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 79

Fig. 10. The faulty subshard probability
 Source: compiled by the authors

Let qfaulty = 1 − pfaulty. Without loss of generality,

we can assume that the number of Workers will be
selected for which the inequality is satisfied:

n · pfaulty · qfaulty > 10.

Then we can use Laplace’s integral theorem:

   
/ 3

P / 3

1/ 31
.

2

faulty

faulty faulty

faulty

faulty faulty

n n p
p n A

n p q

p
n

p q

  
       
  
 

 
  
 
 

Fig. 11 illustrates that it is feasible to establish a
properly functioning shard with 100 or more

Workers if the probability of incoming faulty nodes

is below 1/3. Obviously, if the probability of new

nodes being faulty is 1/3, then the probability of
creating a functional shard will be equal to 1/2 for

any sufficiently large shard. Conversely,

computations indicate that creating a functional
shard with a size of 100 or more Workers becomes

nearly impossible when the probability of incoming

faulty nodes is around 1/2.
Let’s imagine that we are ready to accept some

very insignificant probability of a faulty shard

occurring. Then Fig. 12 will allow one to choose the

appropriate shard size for any probability of faulty

nodes appearing (but no more than 1/3). For
example, if the estimated probability of a faulty

Worker appearing is 0.25 and we are willing to put

up with the probability of a faulty shard appearing

no more than 10−15, then we will have to create
shards of at least 1,000 Workers in size, which is

quite acceptable. A smaller number of Workers is

also not justified from the point of view of the
tokenomics of the platform [19], since in this case, a

relatively small total stake reduces the level of shard

security.
Additional Security Considerations. While

this work focuses on the scalability aspects of

sharding within the Waterfall platform, it is

important to acknowledge other potential vectors of
attack that may affect the security of the system.

 In addition to shard takeover threats, the

following scenarios are worth considering:

 Cross-shard replay attacks, where the same
transaction may be reused maliciously in different

shards without proper validation safeguards.

 Denial of service (DoS) by flooding multiple

shards with high-frequency intershard transactions,
aiming to exhaust network or computational

resources.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

80 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Fig. 11. The faulty shard probability
Source: compiled by the authors

Fig. 12. Probability of occurrence of a faulty shard
Source: compiled by the authors

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 81

 Manipulation of shard assignment,

especially during node onboarding or smart contract

deployment, by adversaries attempting to

concentrate influence within specific shards.

 Inconsistent state propagation, which may
arise from latency in intershard communication and

lead to temporary disagreements in network state.

These aspects are part of a broader security
framework that is being developed in parallel and

will be discussed in a dedicated publication. The

present paper is limited to scalability-centric
considerations but aims to remain compatible with

robust security assumptions.

CONCLUSION

Distributed Ledger Technologies (DLTs) offer
transformative potential across a wide range of

industries. However, they continue to face

fundamental architectural challenges, particularly in
achieving scalability without compromising

decentralization and security – the so-called

blockchain trilemma. In practice, this often results in
a trade-off between scalability and decentralization.

In this work, we proposed and detailed a

hierarchical sharding architecture tailored for the

Waterfall platform, a blockDAG-based DLT with a
hybrid PoS coordination mechanism. The proposed

sharding model reduces the overall system load by

distributing transaction processing, smart contract
execution, ledger storage, and network traffic across

dynamically managed shards. This design builds

upon previously implemented subnetwork and Light

Worker mechanisms, creating a synergistic
ecosystem capable of scalable and sustainable

growth.

The practical viability of our approach has been
demonstrated in the Waterfall public mainnet. The

Main Shard successfully sustained a transaction

throughput of 12,693 transactions per second (TPS)
under synthetic load conditions without performance

degradation. Simulation experiments confirmed the

correctness of shard splitting and merging

procedures, ensured consistent state convergence,
and validated our transaction routing strategy based

on adaptive memory and probabilistic node

discovery. Furthermore, the probabilistic algorithms
for allocating Workers and smart contracts were

shown to achieve near-uniform distribution and resist

adversarial manipulation.
Security aspects were also considered. We

provided a quantitative analysis of shard takeover

attacks, determining thresholds for the number of

malicious nodes that could compromise a shard.

Based on this, we proposed safe shard sizing

parameters, taking into account acceptable risk

probabilities and validator distributions. For instance,
assuming that no more than 25 % of Workers may

behave maliciously, our model indicates that a shard

size of approximately 1,000 nodes is required to
reduce the probability of a successful takeover attack

below 10−6. The corresponding analysis, including

the formal model and simulation results, is presented
in Section “Shard Takeover Attack” and illustrated

in Fig. 7.

The proposed architecture enables the formation

of a theoretically unlimited number of heterogeneous
shards, including application-specific shards with

custom logic and governance models. This flexibility

makes the Waterfall platform highly adaptable to
enterprise and sectoral needs, paving the way for

decentralized infrastructures in finance, gaming,

healthcare, and beyond.
Looking forward, the high-level sharding

framework presented here must be implemented and

fine-tuned at the network protocol level.

Additionally, intra- and inter-shard interactions
should be governed by the platform’s tokenomics

model, ensuring appropriate incentives, economic

sustainability, and operational security.
In addition to practical implementation results,

this work offers a set of novel scientific contributions

that advance the current state of distributed ledger

scalability. The main innovations introduced in this
research include.

1. Fractal hierarchical sharding model. We

introduce a multi-level sharding architecture with
fractal structure, enabling theoretically unlimited

scalability without overloading the coordination

layer. Unlike traditional flat sharding schemes, each
shard can act as a root for its own descendants,

maintaining decentralization and minimizing

overhead.

2. Probabilistic self-balancing allocation
algorithm. A novel method for assigning Workers

and smart contracts to shards is proposed. It ensures

statistical load balancing based on inverse-
proportional distribution (to shard size or gas usage)

and provides resistance to targeted collusion attacks

by randomizing placement.
3. Integration of Light Workers with

subnetworked DAG shards. The paper extends the

Waterfall platform architecture by combining DAG-

based shard ledgers with lightweight validator nodes,
allowing nodes with limited computational resources

to participate fully in transaction validation without

storing the entire ledger.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

82 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

4. Quantitative shard takeover probability

modeling. We present a mathematical model to

estimate the probability of forming a faulty shard
during splitting or onboarding, based on the assumed

share of malicious nodes. This yields concrete

recommendations for minimum shard size to
maintain consensus integrity under probabilistic

assumptions.

5. Efficient transaction routing in hierarchical
shard trees. A transaction routing mechanism is

designed for large-scale sharded systems with limited

peer knowledge. It combines hierarchical shard

identifiers with enhanced Kademlia-based node
discovery, ensuring reliable delivery even with many

shards and partial topology visibility.

These contributions form the foundation for a
scalable, secure, and adaptable DLT architecture

applicable to a broad range of decentralized systems

and enterprise-grade blockchain infrastructures.

REFERENCES

1. Abbas, H., Caprolu, M. & Di Pietro, R. “Analysis of polkadot: architecture, internals, and

contradictions”. IEEE International Conference on Blockchain (Blockchain). Espoo, Finland. 2022.
p. 61–70, https://www.scopus.com/record/display.uri?eid=2-s2.0-85139963560&origin=recordpage.

DOI: https://doi.org/10.1109/Blockchain55522.2022.00019.

2. Antonenko, O., Grybniak, S., Guzey, D., Nashyvan, O. & Shanin, R. “Subnetworks in BlockDAG” .
IEEE 1st Global Emerging Technology Blockchain Forum: Blockchain & Beyond (iGETblockchain). Irvine,

USA. 2022. p. 1–6, https://www.scopus.com/record/display.uri?eid=2-s2.0-85153859577&origin=resultslist.

DOI: https://doi.org/10.1109/iGETblockchain56591.2022.10087101.
3. Antonenko, O., Grybniak, S., Guzey, D., Nashyvan, O. & Shanin, R. “Light Workers in Waterfall”.

IEEE 1st Ukrainian Distributed Ledger Technology Forum (UADLTF). 2023,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85196748086&origin=resultslist.

DOI: https://doi.org/10.1109/UADLTF61495.2023.10548294.
4. Antonenko, O., Grybniak, S., Guzey, D., Nashyvan, O. & Shanin, R. “Subnetworks in BlockDAG.”

ACM Distrib. Ledger Technol: Research and Practice. 2023; 3 (2): 1‒23,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85153859577&origin=resultslist.
DOI: https://doi.org/10.1145/3627540.

5. Antonenko, O., Grybniak, S., Guzey, D., Nashyvan, O. & Shanin, R. “Waterfall: Salto Collores. BFT

based PoS on blockDAG” . IEEE 1st Ukrainian Distributed Ledger Technology Forum (UADLTF). 2023,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85196756787&origin=resultslist.
DOI: https://doi.org/10.1109/UADLTF61495.2023.10548638.

6. Assmann, B. & Burri, S. J. “Advancing Blockchain Scalability: A linear optimization framework for

diversified node allocation in shards” arXiv. 2024. DOI: https://doi.org/10.48550/arXiv.2405.05245.
7. “What is transactions per second (TPS)?” – Available from: https://chainspect.app/blog/transactions-

per-second-tps. – [Accessed: Dec. 2024].

8. Cherniaeva, A., Nikolaev, M. & Komarov, M. “=nil;’s zkEVM1: A Secure Updatable Type-1
zkEVM”. 2023. – Available from: https://cms.nil.foundation/uploads/zk_EVM_1_7d6f8caa16.pdf. –

[Accessed: Dec. 2024].

9. Dang, H., Dinh, T., Loghin, D., Chang, E.-C., Lin, Q. & Ooi, B. “Towards scaling Blockchain

systems via Sharding”. Proceedings of the 2019 International Conference on Management of Data
(Amsterdam, Netherlands) (SIGMOD ’19). New York, USA. 2019. p. 123–140.

DOI: https://doi.org/10.1145/3299869.3319889.

10. Das, S., Krishnan, V. & Ren, L. “Efficient cross-shard transaction execution in Sharded
Blockchains”. ArXiv. 2020. DOI: https://doi.org/10.48550/arXiv.2007.14521.

11. Durov, N. “The Open Network.” 2021.– Available from: https://ton.org/whitepaper.pdf – [Accessed:

Dec. 2024].
12. “Danksharding”. 2023. – Available from: https://ethereum.org/en/roadmap/danksharding –

[Accessed: Dec. 2024].

13. “Sidechains”. 2023.– Available from: https://ethereum.org/en/developers/docs/scaling/sidechains –

[Accessed: Dec. 2024].
14. Goroshevsky, M. “Everscale Whitepaper”. 2021.– Available from: https://everscale.network/files/

Everscale_Whitepaper.pdf – [Accessed: Dec. 2024].

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 83

15. Grybniak, S., Dmytryshyn, D., Leonchyk, Y., Mazurok, I., Nashyvan, O. & Shanin, R. “Waterfall: A

scalable distributed ledger technology”. IEEE 1st Global Emerging Technology Blockchain Forum:

Blockchain & Beyond (iGETblockchain). Irvine, USA. 2022. p. 1–6,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85153866003&origin=resultslist.

DOI: https://doi.org/10.1109/iGETblockchain56591.2022.10087112.

16. Grybniak, S., Leonchyk, Y., Masalskyi, R., Mazurok, I. & Nashyvan, O. “Waterfall: Salto Collazo.
Tokenomics”. IEEE International Conference on Blockchain, Smart Healthcare and Emerging Technologies

(SmartBlock4Health). Bucharest, Romania. 2022. p. 1–6, https://www.scopus.com/record/display.uri?eid=2-

s2.0-85148599293&origin=resultslist. DOI: https://doi.org/10.1109/SmartBlock4Health56071.2022.10034521.
17. Grybniak, S., Leonchyk, Y., Masalskyi, R., Mazurok, I., Nashyvan, O. & Shanin, R. “Decentralized

platforms: Goals, challenges, and solutions.” IEEE 7th Forum on Research and Technologies for Society and

Industry Innovation (RTSI). Paris, France. 2022. p. 62–67.

DOI: https://doi.org/10.1109/RTSI55261.2022.9905225.
18. Antonenko, O., Grybniak, S., Guzey, D., Nashyvan, O. & Shanin, R. “Waterfall: Salto Collores.

BFT Based PoS on BlockDAG”. IEEE 1st Ukrainian Distributed Ledger Technology Forum (UADLTF).

2023. DOI: https://doi.org/10.1109/UADLTF61495.2023.10548638.
19. Grybniak, S., Leonchyk, Y., Mazurok, I., Nashyvan, O. & Vorokhta, A. “Waterfall: Salto Collazo.

High-Level Design of Tokenomics”. Advances in Science, Technology and Engineering Systems Journal.

2023; 8 (3): 231–243. DOI: https://doi.org/10.25046/aj080326.
20. Hafid, A., Hafid, A. & Samih, M. 2020. “Scaling Blockchains: A Comprehensive Survey”. IEEE

Access. 2020; 8: 125244–125262, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85088708743&origin=resultslist. DOI: https://doi.org/10.1109/ACCESS.2020.3007251.

21. Han, R., Yu, J. & Zhang, R. “Analysing and Improving Shard Allocation Protocols for Sharded
Blockchains”. Proceedings of the 4th ACM Conference on Advances in Financial Technologies (Cambridge,

MA, USA) (AFT’22). New York, USA: 2023. p. 198–216. DOI: https://doi.org/10.1145/3558535.3559783.

22. Kaempfer, G. “Fractal Scaling: From L2 to L3”. Medium, StarkWare. 2021. – Available from:
https://medium.com/starkware/fractal-scaling-from-l2-to-l3-7fe238ecfb4f. – [Accessed: Dec. 2024].

23. “Subnetworks.” 2021. – Available from: https://kaspa.gitbook.io/kaspa/archive/archive/components/

kaspad-full-node/reference/subnetworks-1. – [Accessed: Dec. 2024].

24. “The Liquid Network.” 2024. – Available from: https://liquid.net – [Accessed: Dec. 2024].
25. Liu, Y., Liu, J., Yin, J., Li, G., Yu, H. & Wu, Q. “Cross-shard Transaction Processing in Sharding

Blockchains”. Algorithms and Architectures for Parallel Processing. Meikang Qiu (Ed.); Springer. 2020.

26. Maymounkov, P. & Mazieres, D. “Kademlia: A Peer-to-Peer Information System Based on the XOR
Metric.” In Peer-to-Peer Systems. IPTPS 2002. Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, Cambridge, USA. 2002; 2429: 53–65, https://www.scopus.com/record/display.uri?eid=2-s2.0-

84947235017&origin=resultslist. DOI: https://doi.org/10.1007/3-540-45748-8_5.
27. Mazurok, I., Leonchyk, Y., Antonenko, O. & Volkov, K. “Smart contract sharding with proof of

execution”. Applied Aspects of Information Technology. 2021; 4 (3): 271–281.

DOI: https://doi.org/10.15276/aait.03.2021.6.

28. Miller, A., Xia, Y., Croman, K., Shi, E. & Song, D. “The Honey Badger of BFT Protocols”.
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna,

Austria) (CCS ’16). New York, USA; 2016. p. 31–42. https://www.scopus.com/record/display.uri?eid=2-s2.0-

84995495375&origin=resultslist. DOI: https://doi.org/10.1145/2976749.2978399.
29. “A Highly Scalable Public Blockchain via Adaptive State Sharding and Secure Proof of Stake”.

2019. – Available from: https://files.multiversx.com/multiversx-whitepaper.pdf – [Accessed: Dec. 2024].

30. Nguyen, C., Hoang, D., Nguyen, D., Niyato, D., Nguyen, H. & Dutkiewicz, E. “Proof-of-Stake
Consensus Mechanisms for Future Blockchain Networks: Fundamentals, Applications and Opportunities”.

IEEE Access. 2019; 7: 85727–85745, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85068826978&origin=resultslist. DOI: https://doi.org/10.1109/ACCESS.2019.2925010.

31. “Polygon Technology.” 2024. – Available from: https://polygon.technology – [Accessed: Mar. 2024].
32. Poon, J. & Buterin, V. “Plasma: Scalable Autonomous Smart Contracts”. 2017. – Available from:

https://plasma.io/plasma-deprecated.pdf – [Accessed: Dec. 2024].

33. Poon, J. & Dryja, T. “The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments”. 2016.

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

84 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

– Available from: https://lightning.network/lightning-network-paper.pdf. – [Accessed: Dec. 2024].

34. “PREDA: A Programming Model to Scale out Smart Contracts”. 2023. – Available from:

https://www.preda- lang.org/pdf/preda-model-sole.pdf – [Accessed: Dec. 2024].

35. Selkis, R. “A Messari report: Crypto theses for 2023. Technical Report”. Messari, Inc. 2023. –

Available from: https://resources.messari.io/pdf/messari-report-crypto-theses-for-2023.pdf – [Accessed: Mar.

2024].
36. Singh, A., Click, K., Parizi, R., Zhang, Q., Dehghantanha, A. & Choo, K.-K. “Sidechain technologies

in blockchain networks: An examination and state-of-the-art review”. Journal of Network and Computer

Applications. 2020; 149: 102471, https://www.scopus.com/record/display.uri?eid=2-s2.0-
85074299336&origin=resultslist. DOI: https://doi.org/10.1016/j.jnca.2019.102471.

37. Skidanov, A., Polosukhin, I. & Wang, B. “Nightshade: Near Protocol Sharding Design 2.0”. 2024. –

Available from: https://discovery-domain.org/papers/nightshade.pdf. – [Accessed: Dec. 2024].

38. Sun, X., Yu, F., Zhang, P., Sun, Z., Xie, W. & Peng, X. “A Survey on Zero-Knowledge Proof in
Blockchain”. IEEE Network. 2021; 35 (4): 198–205. DOI: https://doi.org/10.1109/MNET.011.2000473.

39. Sunyaev, A. “Distributed Ledger Technology”. Springer International Publishing. Cham: 2020

p. 265–299. DOI: https://doi.org/10.1007/978-3-030-34957-8_9.
40. Thibault, L. Sarry, T. & Hafid, A. “Blockchain Scaling Using Rollups: A Comprehensive Survey”.

IEEE Access. 2022; 10: 93039–93054, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85136667976&origin=resultslist. DOI: https://doi.org/10.1109/ACCESS.2022.3200051.

41. Steen, M., Chien, A. & Eugster, P. “The Difficulty in Scaling Blockchains: A Simple Explanation”.

ArXiv. 2021. DOI: https://doi.org/10.48550/arXiv.2103.01487.

42. “Architecture.” 2023. – Available from: https://docs.venom.foundation/learn/architecture/ –

[Accessed: Dec. 2024].
43. “Annual Report 2024.” 2025. – Available from: https://s29.q4cdn.com/385744025/

files/doc_downloads/2024/Visa-Fiscal-2024-Annual-Report.pdf. – [Accessed: Dec. 2024].

44. “Testnet 8.” 2024. – Available from: https://stats.waterfall.network – [Accessed: Dec. 2024].
45. Yu, G., Wang, X., Yu, K., Ni, W., Zhang, A. & Liu, R. “Survey: Sharding in Blockchains”. IEEE

Access. 2020; 8: 14155–14181. DOI: https://doi.org/10.1109/ACCESS.2020.2965147

46. Zamani, M., Movahedi, M. & Raykova, M. “RapidChain: Scaling Blockchain via Full Sharding”.

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto,
Canada) (CCS ’18). New York, USA: 2018. p. 931–948, https://www.scopus.com/record/display.uri?eid=2-

s2.0-85056891496&origin=resultslist. DOI: https://doi.org/10.1145/3243734.3243853.

47. Zheng, Z., Xie, S., Dai, H.-N., Chen, X. & Wang, H. “Blockchain challenges and opportunities: a
survey”. International Journal of Web and Grid Services. 2018; 14 (4): 352–375.

DOI: https://doi.org/10.1504/IJWGS.2018.095647.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,

authorship or other, which could influence the research and its results presented in this article

Received 02.02.2025

Received after revision 19.03.2025

Accepted 22.03.2025

DOI: https://doi.org/10.15276/hait.08.2025.5 УДК 004.922

Віртуально необмежений шардинг для масштабованих

розподілених реєстрів

Грибняк Сергій Сергійович1)

ORCID: https://orcid.org/0000-0001-6817-8057; s.s.grybniak@op.edu.ua. Scopus Author ID: 57962557300

Леончик Євген Юрійович2)

ORCID: https://orcid.org/0000-0003-1494-0741; leonchyk@onu.edu.ua. Scopus Author ID: 57192064365

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Information technology and computer systems 85

Мазурок Ігор Євгенович3)

ORCID: https://orcid.org/0000-0002-6658-5262; mazurok@onu.edu.ua. Scopus Author ID: 57210121184

Нашиван Олександр Сергійович2)

ORCID: https://orcid.org/0000-0001-8281-4849; o.nashyvan@op.edu.ua. Scopus Author ID: 57963260000

Шанін Руслан Васильович2)

ORCID: http://orcid.org/0000-0002-4414-1126; ruslanshanin@onu.edu.ua. Scopus Author ID: 55983005400

Ворохта Аліса Юріївна4)

ORCID: https://orcid.org/0000-0002-2790-1517; alisa.vorokhta@uni.lu. Scopus Author ID: 59184524100
1) Національний університет «Одеська політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

2) Одеський національний університет ім. І. І.Мечнікова, вул. Дворянська, 2. Одеса, 65082, Україна
3) Waterfall DAO, Цуг, Швейцарія

4) Люксембурзький університет, пр. де л’Універсіте, 2. Еш-сюр-Альзетт, 4365, Люксембург

АНОТАЦІЯ

У роботі представлено підхід до масштабування децентралізованої платформи смарт-контрактів Waterfall, заснований
на концепції ієрархічного фрактального шардингу. Незважаючи на потенціал технології розподіленого реєстру, її широке
впровадження стримується проблемами масштабованості — зокрема, неможливістю пропорційно збільшувати пропускну
здатність мережі із зростанням кількості учасників без шкоди для безпеки або децентралізації. Запропонована архітектура

зменшує обчислювальне та мережеве навантаження шляхом розподілу транзакцій, смарт-контрактів та станів між фрактально
організованими шардами, кожен з яких функціонує як орієнтований ациклічний граф. Це дозволяє залучати вузли з
обмеженими ресурсами та досягати масштабованості не лише на рівні всієї системи, але й у її компонентах. У роботі описано
механізми поділу та злиття шардів, маршрутизації транзакцій, динамічного розміщення смарт-контрактів, а також імовірнісну
модель для оцінки ризику атаки на окремий шард. Проведено моделювання та представлено рекомендації щодо параметрів
безпечного розміру шардів. Хоча розробка здійснювалась спеціально для платформи Waterfall, загальна концепція
фрактального ієрархічного шардингу, а також її окремі компоненти, можуть бути адаптовані до інших блокчейн-систем,
зокрема з модульною архітектурою або архітектурою, побудованою на основі орієнтованого ациклічного графа.

Ключові слова: фрактальний шардинг; смарт-контракти; технологія розподіленого реєстру; масштабованість

ABOUT THE AUTHORS

Sergii S. Grybniak - Ph.D in Computer Science, Department of Applied Mathematics and Information

Technologies, Odesa National Polytechnic University. 1, Shevchenko Ave, Odesa, 65044, Ukraine

ORCID: https://orcid.org/0000-0001-6817-8057; s.s.grybniak@op.edu.ua. Scopus Author ID: 57962557300

Research field: Blockchain and directed acyclic graph technologies, distributed ledger technologies, data science,

decentralized systems design and governance models

Грибняк Сергій Сергійович - доктор філософії з комп'ютерних наук, Національний університет «Одеська

політехніка», пр. Шевченка, 1. Одеса, 65082, Україна

Yevhen Y. Leonchyk - (†2025) was a PhD in Physics and Mathematics, Associate Professor of Department of

Mathematical Analysis. Odesa I. I. Mechnikov National University. 2, Dvoryanskaya Str. Odesa, 65082, Ukraine.

His contributions to the field of mathematical modeling, environmental and economic complex systems, and

Distributed Ledger Technology were significant. Sadly, he passed away in 2025. This work is published in honor of

his scientific achievements and contributions to the field.

ORCID: https://orcid.org/0000-0003-1494-0741; leonchik@ukr.net, Scopus ID: 57192064365

Research field: Mathematical modeling of computer, environmental and economic complex systems, blockchain

technology

Леончик Євген Юрійович - (†2025) доктор філософії з фізико-математичних наук, доцент кафедри

Математичного аналізу. Одеський національний університет ім. І. І. Мечникова, вул. Дворянська, 2. Одеса,

65082, Україна

Його внесок у розвиток математичного моделювання, дослідження екологічних та економічних

комплексних систем, а також технології розподілених реєстрів (DLT) був значним. На жаль, він пішов із

життя у 2025 році. Ця робота публікується на знак пошани до його наукових здобутків та внеску в

розвиток галузі

mailto:nosachenko.bogdan@gmail.com
http://orcid.org/0000-0002-4078-3519

Grybniak S. S., Leonchyk Ye. Yu., Mazurok I. Ye., Nashyvan O. S., Shanin R. V., Vorokhta A. Yu.

 / Herald of Advanced Information Technology

 2025; Vol. 8 No.1: 67–86

86 Information technology and computer systems ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Igor Y. Mazurok - PhD in Engineering Sciences, Senior Researcher, Waterfall DAO, Zug, Switzerland

ORCID: https://orcid.org/0000-0002-6658-5262; igor@mazurok.com, Scopus ID: 57210121184

Research field: Distributed computing, decentralized system design and modeling, artificial intelligence

Мазурок Ігор Євгенович - доктор філософії з технічних наук, старший науковий співробітник, Waterfall

DAO, Цуг, Швейцарія

Oleksandr S. Nashyvan - Master of Software for Automated Systems. Odesa National Polytechnic University. 1,

Shevchenko Ave. Odesa, 65044, Ukraine.

ORCID: https://orcid.org/0000-0001-8281-4849; o.nashyvan@op.edu.ua. Scopus Author ID: 57963260000

Research field: Software development, decentralized systems design, blockchain and directed acyclic graph

technologies

Нашиван Олександр Сергійович - магістр программного обеспечения для для автоматизованих систем.

Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65082, Україна

Ruslan V. Shanin - PhD in Physics and Mathematics, Associate Professor, Department of Mathematical Analysis.

Odesa I. I. Mechnikov National University. 2, Dvoryanskaya Str. Odesa, 65082, Ukraine

ORCID: http://orcid.org/0000-0002-4414-1126; ruslanshanin@onu.edu.ua. Scopus Author ID: 55983005400

Research field: Real Functions, Harmonic Analysis on Euclidean spaces, Function Spaces Arising in Harmonic

Analysis, Blockchain and Directed Acyclic Graph Technologies, Distributed Ledger Technologies, Decentralized

Systems Design

Шанін Руслан Васильович - д-р філософії з фізико-математичних наук, доцент кафедри Математичного

аналізу. Одеський національний університет ім. І. І. Мечникова, вул. Дворянська, 2. Одеса, 65082, Україна

Alisa Y. Vorokhta - PhD student in Computer Science, Interdisciplinary Centre for Security, Reliability, and

Trust. University of Luxembourg, 2, Ave. de l'Université Esch-sur-Alzette, 4365, Luxembourg

ORCID: https://orcid.org/0000-0002-2790-1517; alisa.vorokhta@uni.lu. Scopus Author ID: 59184524100

Research field: Optimization Algorithms, High-Performance Computing, Data Science, Blockchain and Directed

Acyclic Graph Technologies

Ворохта Аліса Юріївна - аспірант з Комп'ютерних наук, Міждисциплінарний центр безпеки, надійності та

довіри. Люксембурзький університет, пр. де л’Універсіте, 2. Еш-сюр-Альзетт, 4365, Люксембург

	DOI: https://doi.org/10.15276/hait.08.2025.5 UDС 004.922
	Yevhen Yu. Leonchyk2)
	Igor Ye. Mazurok3)
	Oleksandr S. Nashyvan1)
	Ruslan V. Shanin2)
	Alisa Yu. Vorokhta4)
	ABSTRACT
	INTRODUCTION
	RELATED WORKS
	WATERFALL PLATFORM OVERVIEW
	SHARD DESIGN
	TRANSACTION ROUTING
	SHARD TAKEOVER ATTACK
	CONCLUSION
	REFERENCES
	DOI: https://doi.org/10.15276/hait.08.2025.5 УДК 004.922
	Леончик Євген Юрійович2)
	Мазурок Ігор Євгенович3)
	Нашиван Олександр Сергійович2)
	Шанін Руслан Васильович2)
	Ворохта Аліса Юріївна4)
	АНОТАЦІЯ

