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STRENGTH AND DEFORMATION OF POLYMER PIECES
AT THE LIGHT INDUSTRY

T'I. Kynix, O.I1. Bypmicmenkos, b5.M. 3nomenxo. Minnicts i nedpopmanisi mojiMmepHux aeraJjieii Jerkoi npoMucio-
BocTi. CTaTTs NpHUCBsIUCHA IHKEHEPHOMY METOIY BH3HAYCHHs MII[HOCTI 1 AedopMarii HoJIiMEepHUX AeTaeH JIErkoi mpoMuc-
JIOBOCTI Ha MPHKJIAJl MiIomBH B3yTTs. OTpUMaHO aHAIITHYHI 3aJIeKHOCTI JUIsl BU3HAUCHHS MII[HOCTI i IPOTMHY KOHCOJIBHOT
6anku 3 B’S3KO-IIPY)KHOTO MaTepiany. OTprMaHi 3aJeKHOCTI A03BOJISIOTH OLIHUTH HMOBEAIHKY MiIOIIBH y HPOLECi HOCIHHS
B3yTTsl 1 IPOrHO3YBATH MOr0 eKCILTyaTaI[iifHI XapaKTepUCTHKHA. Y MOBH HaBaHTa)XEHHs OAJIKU BiAIOBIaIOTh pOOOTI MiIOIIBU
B3YyTTS Ha BUCOKMX mifgbopax. I[Ipy MaTeMaTHYHOMY MOJICIIOBaHHI HABAaHTA)KCHHs KOHCOJIBHOT OaKi BpaXOBaHO BIIACTHBOC-
Ti Marepiany, sKi He BiNMOBigaroTh 3aKkoHy ['yka. Po3paxyHOK Ha MIIHICTh IO3BOJISIE€ BH3HAYATH ONTUMAJbHI T€OMETPHYHI
TapaMeTpH MiJIoMBY, a came ii TOBIUHY i (opMy pruQIICHHS XOZ0BOI ITOBEPXHI, SIKi JJO3BOJIATh YHUKHYTH 11 pyHHYBaHHS IIiJ
ni€ro poOoYMX HaBaHTaKeHb. PO3paxyHOK Ha MPOTHH JO3BOJISIE IPOTHO3YBAaTH BENMYMHY AedopMamnii MifOMBU BiTHOCHO
Ka0JIyKka B MOMEHT ii KOHTaKTy 3 IPyHTOM 3 METOI0 3a0e3neyeHHs HeoOXiaHOT popmu B3y TTSI.

Knrouogi crosa: minHicTb, redopmaltisi, B’I3K0-IPYXKHE TiJI0, IPOSKTYBaHHS IiJIOIIBH B3yTTsI, €KCIUTyaTaLii{Hi BIacTH-
BOCTI B3yTTsL.

T.1. Kulik, O.P. Burmistenkov, B.M. Zlotenko. Strength and deformation of polymer pieces at the light industry.
The article is devoted to elaboration of engineering method to evaluate both strength and deformation of polymer details at
light industry on the shoe sole example. Analytical dependences for determining the strength and deflection of a cantilever
beam made of viscoelastic material are obtained. These dependences allow to estimate the behavior of the shoe soles with
high heels while wearing the shoes. In mathematical modeling of cantilever beam load the material properties that do not
meet Hooke's law are taken into account. Strength calculations provide the possibility to determine the sole’s optimal geo-
metric parameters, namely its thickness and the shape of the running surface corrugations. Deflection calculations allow pre-
dicting the sole deformation value respectively to the heel at the time of its contact with the ground surface to ensure shoes
form stability.

Keywords: strength, deformation, viscoelastic body, shoe sole design, shoe performance properties.

Introduction. Today, polymer materials are widely used by various industries, especially in ma-
chine building engineering, civil building, light industry and the production of packaging materials [1].
In the shoe industry almost all bottom shoes’ parts are made of polymers. Such components must meet
several requirements: the shoes sole should be both resilient and flexible and have sufficient rigidity
and strength. Providing enough strength is important in the shoes design as the sole is prone to differ-
ent types of stress, such as multiple bending (with different areas constantly stretched and com-
pressed), sole surface multiple compression when walking and dynamic stress when jumping and run-
ning. Thus, the details accurate design with regard to these factors will increase their strength and im-
prove the product quality [2, 3].

Literature review. Designing product parts at light industry is complicated by the fact that they
are made mainly of artificial and synthetic polymer materials which are not elastic bodies, therefore
impossible being to apply here the methods of materials strength and elasticity theory [4, 5].

Using the viscoelasticity theory methods leads to considerably complicated calculations imposing
the account of load or deformation timing mode.

The Aim of the Research is to develop engineering methods of light industry parts calculation,
based on the known relation function between the polymer materials’ strains and stresses:
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o" =Feg, @8
where m — degree varying from 0,6 to 1 (at m =1 the body demonstrates its elasticity);
©c — stress;
€ — strain

Main Body. We proceed to study the clear bean bending (Fig. 1), characterized with m =1.
The equilibrium condition implies that

X =0 or [odd=0,
A
SM,=0, M-%dNz=0 or M—[ozdA=0,
A

thus
[ozdA=M, ()
A

SM.=0,  ZdNy=0 or [oydd=0,
A

where M — bending moment;
G — normal stress.
The beam’s element shape prior to load and after distortion is shown at Fig. 2.
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Fig. 1. Diagram of bent beam load Fig 2. Beam element: prior and after the distortion

Initial length of the fiber AB, positioned at the distance z from the neutral axis and elongated
when influenced by stress o
dx =00,0, =rda,
where r — beam curvature radius;
o — central angle.
After distortion the length
UAB =(r+z)do .

Absolute elongation of the fiber
Al=(r+z)do—rdo=zdo .

Where from the respective elongation [2]

zda z
= ==, 3
rdo. 1 )
From (1) we get
1
oc=(Eg)m. 4
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Introducing (3) at (4)
x
A
r
Introducing (5) at (2):
1
j(Ef)’" zdA=M ,
A r
either
1
m o L,
(Ej zn'dA=M . (6)
r) a
Identifying the integral (6)
1
1, =[zn"dd. ()
A
Taking into account (6) and (7)
1 1
(Ej"’ I,=M or (Ej”’ M (8)
r r I,

53
r

Introducing (9) at (8)
1
Mzm
c= 10
I (10)
Defining
1,
Z= T (11
zm
With the account of (10) and (11)
M
c=—.
Z
To evaluate distortions, we rewrite the (8) as
1 M m
—= . 12
r EI" (12)
Considering the beam distortion diagram (Fig. 3) the unit length of the bent beam’s axis will be [2]
ds=rd0 and 12@ (13)
r ds
Admissible is the approximation
ds =~ dx, (14)
Oztanezd—y. (15)
dx
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Differentiating (15) we obtain

2
D oL (16)
dx dx?
With the account of (14) and (16) the expression (13) can be written as
1 d%y
—= . 17
roodx? (1n
Introducing (17) at (12)
d?y
El,—=M". (18)
dx?

Now we determine the cantilever beam distortion parameters under concentrated force applied to
its free end. Considering that the increment dx corresponds to the decrement dy , the bending moment

M =-P(l—x). (19)
Introducing (19) at (18)
ELy"=[-P(l-x)]". (20)
Upon variables’ deployment at (20) with further integration we get
EL,y' =(=P)" [(I-x)"dx=P" [(x=D)"d(x—1)=P" : GRS (21)
m+
When initial conditions x=0, y'=0 the constant value
C=-Pm ;Z’”*1 . (22)
m+1
Introducing (22) at (21)
Elmy' — Pm l (x _ l)m+1 _ Pm 1 Zm+1 — _Pm l [1m+1 _ (x _ l)m+1] X (23)
m+1 m+1 m+1
With respect to (1) from (23) the beam section rotation angle will be
Pm
e: I:——Z’”H_x_l m+1 .
4 (m+1EI, [ (=0

Detailing the variables at (21) with further integration we get

El,y=pn—! [(x=1y"'dx+ [ Cdx =P~ ! [(x=D)d(x—1)+ [ Cdx =
m+1 m+1
| (24)
=P"—————(x-D)"2+Cx+D.
(m+1)(m+2)
When initial conditions x =0, y =0 the constant value is
1
D=pr—m M2, 25
(meD)(m+2) 29
Introducing (25) and (22) at (24), we get
EImy — Pm 1 (x_l)m+2 _Pm lm+1x+Pm 1 lm+2 —
(m+1)(m+2) m+1 (m+1)(m+2) 26)
1
=_Pm m+2]m+lx_lm+2_ x_l m+2 X
(m+1)(m+2)[( ) (=]
From (26) the formula for the beam curvature is
Pm
=— m+2)[m2x —[mt2 — (x —[)"+2].
4 (m+1)(m+2)EI, K ) (=]

Let us consider the cantilever beam distortion under even-distribution load (Fig. 4).
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Fig. 3.Diagram of a cantilever beam distortion under
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concentrated force applied to its free end the evenly distributed load

At such a case the distorting moment

(I=x)
M=—qg——"—.
1 2
Introducing (27) at (18)

" (Z_x)Z j|m
ELy"=|—q—2" |
mY |: q >

The variables at (28) being developed with further integration, we obtain

EL,y' = (‘%)m [(1=x)>mdx = %m [x=Drd(x—1)= (%j"’ !

2m+1
When initial conditions x =0, y'=0 the constant value

C=— q T J2m+l
2) 2m+1

(x—=1)>" +C

Introducing (30) at (29)

(g 1 q) 1 q) 1
E[ —| £ x_l 2m+l | L —12m+1:_ 2 - 12m+1_ X—l 2m+1 .
¥ (2) 2m+1( ) (2) 2m+1 (2} 2m+1[ (r=h

With the account of (15) from (31) we get the beam section rotation angle

' q"
0=1'=— J2mH (= [)2m+1T
4 2n(2m+1)EI, [ ( ) ]

Developing the variables at (29) with further integration we obtain

(g 1 g)" 1
Ely =+ — 12ty + [ Cdx =| L —Iy»d(x 1)+ [Cdx =
v ~{2) gl fear=[ 4] Sttty i

- (1) ! (x=1)"2 + Cx + D.
2) Cm+1)(2m+2)

When initial conditions x =0, y =0 the constant value

— (i)m 1 2m+2 .
2) Cm+1)2m+2)
Introducing (33) and (30) at (32)

EL,y :[gj 1 (x —1)2m+2 _(gj L[2m+1x+(gj 1 [2m+2 —
2) Cm+1)(2m+2) 2) 2m+1 2) Cm+1)(2m+2)

- g m ! 2m+l _ [2m+2 _ _ ])2m+2
- (2) Gm D) m s gy Zm D = = =y

Fig. 4. Diagram of a cantilever beam distorted with

27

(28)

(29)

(30)
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From (34) the beam curvature formula

qﬂl
— 2m+2 12m+2 _12m+2 _ x_l 2m+2 .
Y m+ 1) 2m+2)El, [2m+2) (=]
Case of cantilever beam free end and concentrated force applied
m [ m+1
R (35)
(m+1)EI,
Pml2m+1
A S —— 36
S=y (m+2)EI, (36)
Case of cantilever beam free end and distributed force applied
m[2m+l1
max = S — > 37
2m(2m+1)EI,
qml2m+2
= max = - 38
S=y 2m(2m+2)EI, 38)
The integral (7) for rectangular cross-section beam (Fig. 5)
1
1 m2 o1 h2o1 . P
I,= J.Z;HdA = J. zn 'bdz =b I zn'dz = b |:Zm+2:l __ 2 (ﬁ) . (39)
A —h/2 —h/2 l+2 —h/2 i+2 2
m m

Introducing (39) at (10)

1 1
M ( + 2)2"1
_\m_J
- .
—+2
21{’1)'"
2

The stress at fiber most distant from the neutral axis (position with) z=#h/2,

o=

ZM(Z + lj
m
o=——"17-—"2%.
bh?
Introducing (39) at (35) ... (38)
Pmlm+1 Pm12m+1
emax =- l+2 3 f = ymax == l+2 b
(m+ 1)E12b(hj"’ (m+ 2)E12b(hj’"
—+2 2 —+2 2
m m
ml2m+l ml2m+2
Omax = q T, B fzymax = 4 1., :
2 (2m + 1)E12b£hjm 2 (2m + 2)E12b£hjm
—+2 2 —+2 2
m m

Results. To avoid the sole’s unacceptable deformations and destruction at its attachment to the
heel point, we can determine its desired thickness, knowing all other geometric parameters of the pro-
duced footwear and the human expected weight (Fig. 6).
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dz > q

3 7 S geosp
h 0 =y \/ |

b
. . a b
Fig. 5. Rectangular cross-section
beam diagram Fig 6. Diagram of the sole loading (a) and equivalent diagram

of cantilever beam (b)

The shoe sole can be represented schematically as a beam which width essentially exceeds the
height and is equal to averaged lengthwise value.

Conclusions. The obtained dependencies can be used in the analysis of shoe sole loads during
footwear further wearing process.
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