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DISCRETIZATION METHOD USED TO RESOLVE
THE RECTANGULAR PLATES’ STABILITY PROBLEM,
CASE OF SINGULAR ELASTIC FOUNDATION

P.M. Tayiu, T.I. Ywax. Meroa nuckperu3anii B 3a1a4i npo cTiliKicTh NPSIMOKYTHUX IUINT HA CHHTYJSIPHIH nmpy-
JKHiii ocHOBI. B naHiii crarTi 3anpornoHoBaHuii HOBUI HAOIKCHUI METOM PO3B’s3aHHs 3aad MPO CTIHKICTh MPSIMOKYTHHUX
IUTAT HAa CHHTYJIPHIN NPYKHIA OCHOBI. 3a/1a4a 3HAXOHKEHHS KPUTHYHHUX CHJI 3BOTUTHCS J0 PO3B’sI3aHHS AUdEpeHIiaTIbHIX
PIBHSIHB 3 CHHTYJSIpHHUMHU KoedilieHTamu y ¢popMi aenbTra-QyHKIiH. B 0CHOBY MeToy MOKJIaIEHO alpOKCHMAIi0 Koedimie-
HTIB BIOBIHUX IHU(EpPEHIIAbHIX PIBHAHb y3araJibHeHUMH (yHKIisiMu. CTaTTs MICTHTh NOPIBHSUIBHI PE3yJIBTATH 1 Je-
MOHCTpY€ e(eKTHBHICTE METOYy IIPH PO3B’s3yBaHHI 3a1ad Ipo cTilKicTb. OTpUMaHi HOBI pe3yJIbTaTH, HEBIOMI B CIIeIliali-
30BaHiil JiTeparypi.

Kniouosi crosa: Meton MUCKpeTH3allii, y3araabHeHe KBa3iqudepeHIliaibHe PIBHIHHS 4-T0 MOPAAKY, CHHTYJSIpHA TIPY-
JKHAa OCHOBA, 3a/]a4a IPO CTIHKICTb.

R.M. Tatsiy, T.I. Ushak. Discretization method used to resolve the rectangular plates’ stability problem, case of
singular elastic foundation. The authors propose a new approximate method for solving the rectangular plates’ stability with
a singular elastic base problem. The problem of critical forces’ determination is reduced to solving a set of differential equa-
tions with singular coefficients in the form of delta functions. Proposed methods is based on these differential equations*
coefficients approximation with generalized functions. Authors present a comparative study which demonstrates the elaborat-
ed method efficiency when applied to stability problems. Principally new results not considered earlier with the special
sources are obtained.

Keywords: discretization, generalized 4™ order quasi-differential equations, singular elastic base, stability problems.

Introduction. To investigate under load the stability of plates having an elastic foundation, as a
rule, used are the approximate methods [1, 2]. But the accurate solutions are obtained only, few excep-
tions made, for differential equations with constant coefficients. An effective way to study the separate
plates’ and plated systems’ dynamics and stability is embodied with a method these recent years pro-
posed by [3] authors and known as the boundary elements method (BEM). However, when model pa-
rameters’ discrete-continuous distribution takes place, the differential equations’ integration using
standard techniques is associated with considerable difficulties or the complex basic functions’ emer-
gence. Considered is the elastic foundation singular model, when stiffness coefficients k;(x) contain

features of O -function’s and its derivatives’ type. The article considers a proposed solution to the
problem of elastic foundation-based plates’ stability loss on using quasi-differential equation (QDE)
with generalized coefficients. It uses a discretization sampling method [4, 5], based on the concept of
quasi-derivatives’ for QDE with generalized coefficients and the corresponding linear differential
equations’ systems solutions approximation with measures [6].

Statement of the stability problem for rectangular plates based on elastic foundation and
elastic supports. We shall consider a rectangular plate of constant thickness, which is located on a
single-layer elastic foundation loaded with longitudinal compressive forces N, =N (Fig. 1).

These plates’ stability equation will get the formulation [1]:
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2
DVZVZy—k2V2y+k1y+N2);=O, (1)
X
3
where D = _bHT plate’s cylindrical stiffness;
12(1-p2)
E — plate material elasticity modulus;
= E — concrete shift modulus;
2(1+p)

p — Poisson’s coefficient,
H — plate thickness;
ki(x,z) =ky(x,2) + Zkli(z)s(x —X;);

ki (x,2) = ky(x,2) + ZkZi(Z)g(x —X;) —

elastic foundation stiffness coefficients [7].

2)

Function S(x —X; ) at formula (2) represents the Dirac 6 — function with carrier at the point x = x; .

The k, coefficient determines the elastic foundation’s ) )

compressive work and the k, coefficient determines the E
foundation’s shifting (shearing) work. Determining coeffi- '
cients as by (2) allows taking into account the continuously
distributed reaction forces influencing the plate work as
well as the discrete parameters (elastic supports and reac-
tion torque in line with the coordinate x = x; ).

From the elastic supports’ side the rod is prone to con-
centrated reactions k;;) -proportional to corresponding sup-

ports’ linear displacements as well as to reaction torques

k,;y" -proportional to the supports’ section angle of rotation Fig. I. Rectangular plate
respectively to the axe y . The supports’ flexibility at linear
movement is characterized by the stiffness compression coefficient %, , and their rotational suppleness
is characterized by stiffness ratcheting coefficient k,,. Concentrated moments and elastic supports’

reactions are directed oppositely to the supports’ rotational and linear movement. Let we assume for
simplicity that the elastic foundation stiffness coefficients are stable by the coordinate z .
The edges of the plate z=0 and z =5 are assumed to be freely supported:

0%y 0%y
= = gy = = O .
Y=o 822 o yyfb ayz .
The equation (1) solution shall be found using a single trigonometric series [7]
2 . knz
y(x,2) = Y, (x) s 3)
k=1
Introducing (3) into (1) we get the equation
2 4 2
YkIV+ w_z k_TE Yk"+ k_ﬂ: +ME +M Yk:() (4)
D b b D \ b D

Generalized 4" order quasi-differential equation. We consider within the actual axe’s open inter-
val E the equation:

(ag(x)y") +ay(x)y+(a(x)y') =0, )
where a,7'(x) — a function, locally limited and measured at [ ;

MAIIMHOBYIYBAHHA. TEXHOJIOI'LA METAJIIB. MATEPIAJIO3HABCTBO



38 . . . . ISSN 2076-2429 (print)
[Ipani Oxeckkoro MoJIITEXHIYHOTO yHIBEpCHUTETY, 2015. Bum. 2(46) ISSN 2223-3814 (online)

I — open interval of real axis;

a,(x) =b{(x); ay(x) =b5(x); by(x);b,(x);b,(x) — functions of a variation locally limited at /
(class BV,;.(I) [8]);

b/(x),by(x) — generalized derivatives (measured at /) [8].

To resolve the equation (5) we introduce the quasi-derivatives in such a manner:
def

YO(x) = y(x); Y1 = y'(x); Y12 =a,y"(x);

YEI(x) =a,y'(x) + (ay"(x))". (6)
The initial QDE (5) is reduced into a system of 1* order equations
Y'(x)=C'(x)Y(x); (7)
where
y 0 1 0 0
il , 0 0 a,'(x) 0
Y= | Cw= ’ . ®)
(2] 0 —a,(x) 0 1
i3] —a,(x) 0 0 0
The system (7) is correct [8], as the necessary and sufficient accuracy condition is satisfied:
(AC(x))’ =0, Vxel, 9)
0 0 0 0
0 0 0 0
where AC(x)zC(x)—C(x—O)z — (10)
0 -Ab(x) 0 O
—Ab, (x) 0 0 0

matrix of this system displacements;
Let B(x,s) — is the fundamental matrix of system (7), which structure is well studied at works

[8, 9], characterized with such features:

1. B(s,s)=E , where E — unity matrix;

2. B(x,s)=(E+AC(x))-B(x—0,s); (11)

3. Vx,x,x; € 1 B(x3,x2)-B(x2,x1)=B(x3,x,).

Using this matrix for an arbitrary initial vector Y, = Y(x0 ), x, € I , we can write down the solu-
tion get for the system (3) as

Y(x)zB(x,xO)YO. (12)

Proceeding to the equation’s (5) variable coefficients approximation, we divide the rod having a
length /into n equal parts. Let the initial point is x, =0, the ending one x, =/, and the dividing step
h=x,,—x,, at k=0,...,n.

The approximation of a,(x) coefficient is following (/—approximation [6]). At every interval
[x;5x,,;) the a,(x) value is stable:
b (X)) = by (x;)

h

where b,(x) = jfao (t)dt. (13)

ao(x)z zak’xe[xkvxkﬂ)’

We proceed to respective [10] approximation of coefficients a,(x)=55(x) and a,(x)=>b/(x)

(d — approximation) within the interval [x,;x,,,):
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def

a, (x) ~ bl (xk )S(X - xk) = Cks(x — X ) )
() ~ by (5 )8(x — ) = 35— x0), (14)

where S(x - X, ) — the Dirac 8 -function containing carrier at the point x =x, .

Approximation performed the QDE (5) will appear as:

["Zlakeky:;j +{"Zldk6(x—xk)}y,,{{"Zlckax—xk)}y;} ~0 (15)

representing a particular (actualized) case of QDE (1),
.. . . 1, xe[xk’xkﬂ]:
where 0, — characteristic function of the interval [x,;x,.,): 6, =
0, x & [x;,x ]
Known is [6] that at n — oo all solutions of the equation (15) together with their quasi-
derivatives y[1, y[ and yll are equally directed to the corresponding solutions and quasi-derivatives

of the equation (5):

lim yLi](x)—y(x)[i]‘zo, i=03. (16)
In this case the displacements matrix (10) will be
0 0 0 0
AC(xy) 0 0 00 (17)
X =
’ —, 0 0

—d, 0 0 0
Coefficients a,,a,,a, , determined in such a way, the fundamental matrix B(x,,,,x,) of quasi-

differential equation (a,y")" =0 will take the shape [9]:

2 3
15 h h
2la,  3la,
h h?
B(xp,x) =0 1 a_ N4 (18)
k “ay
0 O 1 h
0 0 0 1

The differential system (7) fundamental matrix, considering properties (11) can be found, using
the formula [9]:

B(x,,,xo)=B(l,0)=ﬁ(E+AC(xk))B(xk+1,xk). (19)

The matrix B(/,0) can also be built in other way [11].

Implementation of discretization method at rectangular plate stability problem when elastic
foundation combined to elastic supports. Let us consider the stability problem for reinforced con-
crete rectangular plate with elastic foundation and elastic supports (Fig. 1), the length at z axis being
30 m, and length at x axis making 20 m. The plate edges z=0 and z=b=30m, as well as x=0 and

x=L=20m are supported with articulated linkage. The free edge x=20m is proportionally compressed
with N, =N force. The plate thickness is H=0,1 m. The plate material characteristics £=2,7-10"kPa,
n=0,167 — respectively the elasticity modulus and the plate material’s Poissonian coefficient. The
elastic supports are positioned along z axis, at the points x; =2; 4; 6; 8;10;12; 14;16;18 m. The elastic
singular foundation stiffness is determined with stiffness coefficients k;;k, (2).
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According to [1]
Eysy, e = Eon,

= = 20
YT 204 0
Constant values at the expressions (20) are defined with such formulae:
E o
Ey=—=—1 py=——: 1, = [ y2(»)dy;
I-n I-p 0
21)

su= [TV )Py

where E =3,2-10* kPa — elasticity modulus;
= 0,3 — Poisson’s ratio of foundation;
y(y) — foundation settling transversal distribution non-dimensional function.
Case of a thin enough layer (thickness of H, =2 m) characterized with normal tension stability,
we can assume [1]:
H -y
=1 = 22
y(») 7 (22)
At that the coefficients (21) are found according to [1]:
H, H
o= [ w2 (ndy =Tl;
. (23)
H, , 1
su=[[WO)Pdy =3
0

The coefficient of support compression stiffness k;;, and the support ratcheting stiffness coeffi-

cient k,; would be found [1] using formula (20), where the coefficients #,,s,, are:

oo 10H
s =10H [ [y'(y)Pdy =3
’ (24)
o 10H,H
i =10H [y (ndy =—=.
0

Let we introduce into equation (4) the o =0;1, and 3 =0;1. parameters. Then the stability prob-

lem for a rectangular plate supported with elastic foundation and elastic supports will be reduced to
solving a generalized 4™ order QDE (GQDE)

N =Bhy(x) 1 ZANM
v {%_Bgakﬂ&x—xl—)—z(ﬂ }Yk +

4 Bhyy(X)+ D 0ky8(x—x;) 2
+ [@j + : (kn} + (25)

b D b

Bklo(x)+zak118(x_xi)
D

+

Y, =0

with next boundary conditions
y(0)=y"(0)=y"1)=0;

N—Bhy(x) 1 (knjz:ly,zo‘ (26)

y’"(l)w{ 5 EZ(kaIS(x—x,-)—Z —
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To resolve the (25) equation, we designate the quasi-derivatives in such a manner:

def
YOUx) = y(x) 5 y1(x) = y'(x) 5 yPI(x) = y"(x);

P =)+ T2 5k S - 2[";‘} }y’. @7)
The initial QDE (25) shall be reduced to the 1* order equations system
Y'(x) =C'(x)Y(x), (28)
¥ 0 1 0 0
il 0 0 1 0
where Y(x)= ; C'(x)= ;
yH i 0 1
yBI —f5 0 0 0
N —Bhy(x) 1 k)’
fi =B 5 ok x ) - [ﬂ :
k) By (x) + zakﬂs(x - x;) k) Beyo (x) + Zakns(x Xi )
=| — + i _—
) )

Using the fundamental matrix B(x,x,) for an arbltrary initial vector Y, —Y(xo) X, €l , we

write down the system (28) solution as (12).
We proceed to discretization according to following scheme. We divide the interval [0,L] with

X, =0,x,%,,...,x, =L points into n equal parts, the by-unit length of every part (dividing step) is

equal to L = h . Instead of the equation (25) we consider the n-th approximation QDE (discretization

n
method)
anV +{[W (kbnj \JhZS('x xk)__zakﬂs(x x)}yn
4 2 (29)
km ky(X)( kT ko (x km
+H(7j +%(71 L Bl )}hzéi( —xk)+B§[ak“ +0Lk21( : j JS(x x)}y,,
At such case the displacements’ matrix (10) is
0 0
0 0
N—ky(x) (kn)’
AC(x,) = 0 —{T% 5 h 0 0] (30
4 2
_ k_ﬁ n ko (x) @ n ko (x) A 0 0 0
b D b D
Exemption made for x; points at which the displacement matrix appears as
0 0 0 0
AC(x;) 0 00 (31
' 0 -f: 0 0
—f5 0 0 0
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2
N—-k k k
v = 0 o5

Joi = Hk_nT +M(@j2 +—k1°(x)Jh +i[k11 +ky, [@I] :
b D b D D b

The fundamental matrix B(x,,,,x;) QDE (a,»")" =0 appears [8]:

2 L3
T A
2 3l

h?
B(x,x)=0 1 A —1 (32)

0 0 1 h
0 0 O 1
The differential system fundamental matrix (28) can be found using the formula (19), getting

therefore the characteristic equation.
Considering the conditions for positioning at x =0 point, the initial matrix Y,, appears as

0 0
. 1 0
‘ool
0 1
Assigning
A Gy
B, (x,x) Yo =| 7 ¥
sy Ay
Ay Ay
When an articulated linkage at the ending point (x =1) the characteristic equation gets a form of
|A(N)| = det(an(N) @3 (V) } 0. (33)
an(N)  ayu(N)

Setting the N values at the predefined step, we use a PC to obtain from the (28) equation the
critical forces N,.

The comparison chart at Table 1 represents values of the three first critical forces for the com-
pressed plate with elastic foundation and elastic supports N; when k£ =1;2;3, and for various values of
o, parameters. We proceed to solve the problem of stability for rectangular plate with articulated
edges fixation when o=0,3=0 and compare the result to these obtained analytically using the for-

mula [10]:
3)
N =Dn? L 2b
m

A
where m,n — number of half-waves in longitudinal and transversal directions

At calculations adopting the dividing step as 10~ and 10~ the frequencies’ values remains un-
changed in the 4™ decimal place, so, the dividing step minimizing makes no sense.

(34)

B
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Table 1
Comparison of critical forces when the plate edges are hinged-pivot attached
to the elastic foundation and elastic supports
Method Analytical method [11 ] Proposed method
a | B k=1 k=2 k=3 k=1 k=2 k=3

N, 0 0 12,3567 45,6978 94,7590 12,3567 45,6978 94,7590
N, 0 0 29,2466 49,4268 111,2103 29,2466 49,4268 111,2103
N, 0 0 58,6963 76,4393 199,2309 58,6963 76,4393 199,2309
N, 1 0 — — — 142,3257 146,9893 155,6261
N, 1 0 — — — 252,6189 258,7716 269,6689
N, 1 0 — — — 328,3047 335,1174 346,9789
N, 1 1 — — — 1259,7989 1276,6399 1305,7493
N, 1 1 — — — 1275,1866 1297,2387 1335,3994
N, 1 1 — — — 1352,5147 1379,8323 1426,6423

We consider also problems of a rectangular plate stability with elastic foundation and elastic
springs when hinged pivot-attached by the lines z=0 and z=5b=30m, the longitudinal edges’ along

lines x=0 and x=L=20m, being differently attached when a=p=1.

Here we investigate the following conditions of a plate’s longitudinal edges attachment:

1) hinged pivot: y=0 and yl?=0;

2) rigid attachment: y =0, y'=0;

3) free edge: y1*' =0 and yll=0.

These three attachment conditions are conventionally identified with respective indexes 0, 1, 2 to
consider the problem of (if), i,j=0,1,2 types. So, e.g., a problem of (01) type refers to the condi-
tions: left plate edge being attached with an articulation link (x =0), the right edge (x=/) — has a

rigid attachment.
The initial matrix Y|, taking into account the positioning at the point x =0, rigidly attached with

a respectively free edge:

0 0 1 0
N L R 29)
1 0 0 0
0 1 0 o0
We denote as
a  dp
B(LO)Y,=| 2 (30)
d; a4y
Ay Ay

Then, in compliance to the right edge attachment conditions (x = L) we obtain a characteristic
equation serving to evaluate respective free vibrations’ frequencies for a hinged-pivotal, rigid attach-

ment and the free edge.
a a a a
Jzo;det( " 2 J:O;det( . nj:O.
ay dp a,  dyp

a, ap
det [
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Table 2 below exposes the critical forces’ values for various longitudinal attachment methods and
different half-waves’ number.

Table 2
Critical forces at various methods of attaching the longitudinal edges
of a plate with elastic foundation and elastic supports
Type k N, N, N,
01 1 1238,7701 1259,7973 1263,1443
11 1 1272,9984 1309,6605 1394,1699
12 1 985,7169 1259,7272 1260,5716
01 2 1258,5827 1276,4804 1281,8164
11 2 1292,0247 1331,3481 1419,9577
12 2 1006,2631 1298,7006 1355,9793
01 3 1291,4108 1304,6889 1313,9039
11 3 1324,5285 1368,3749 1464,0774
12 3 1040,7805 1332,6799 1395,7249

Conclusions. A new approximate method to calculate the critical forces for the singular type
elastic foundation plates is suggested; this method departing from the approximation of corresponding
differential equations’ coefficients using generalized functions. The elaborated method can serve is
basis for researching the loss of stability of real engineering structures having elastic foundation and
elastic supports. The obtained results are principally new. This method is characterized by both the
algorithm’s simplicity and versatility at the same time that fast convergence achieved. Thus obtained
numerical results are consistent with the known ones with appropriate parameter values.
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