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DETAILED EXPLICIT SOLUTION
OF THE ELECTRODYNAMIC WAVE EQUATIONS

LIO. [lmumpicsa. [leranbHe ToUHe PO3B’SI3aHHSI eJIEKTPOINHAMIYHAX XBHJILOBHX PiBHSIHb. J[aHi pe3ysibTaTH CTOCYIOTHCS
3araJIbHOrO HAyKOBOTO HAMPSIMKY BiIHOCHO MAaTEMATHYHOTO MOJIC/IFOBAHHS 1 aHATITIHYHOTO BUBUECHHS SIBUIL €JIEKTPOMArHITHOTO OIS,
10 ONHKCYIOTBCS CHCTEMaMU IU(EpEHIIATBHIX PIBHAHD Y YACTWHHUX MOXimHUX. CremianpHUN eNeKTpOIMHAMIYHUN IHKSHEPHHUN
HPOLIEC 3 eKCIIO(MYHKI[IOHATEHUMH BILTMBAMH MOJEIIOETHCS AU(EePeHIIATIEHOI0 CHCTeMOr0 MakcBesnia, Yne epeKTHBHE JOCHIDKEHHS
€KBIBaJICHTHE CTPOrOMY PO3B’SI3aHHIO 3arajIbHOTO XBIJIBOBOTO IH(EPEHIIATbHOTO PIBHSIHHS Y YaCTHHHIUX ITOXIJTHHX, SIKE 3aJIXKUTB BiJl
yCIX CKaJSIpHUX KOMITOHEHT BEKTOpIB HAMPY>KEHOCTI eJIEKTPOMArHITHOTO TOJIsL. Lle piBHSHHS PO3B’A3Y€THCS ACTATIBbHO Y SIBHOMY BH-
YIS/ METOZIOM IHTErPANIbHUX TIEPETBOPEHb Ta OE3BITHOCHO KOHKPETHNX KPAaHOBHX yMOB. Po3NIsIHYTO CclieniaibHi BUTaaKK He30y DKe-
HHX BaKyyMy H 130TPOITHOTO OJJHOPIZHOTO CePEeIOBHINA. 3aIPOIIOHOBAHMH ITIXi] MOXKE 3aCTOCOBYBATUCH JI0 JOBLIBHOI KIHIIEBO BHMi-
pHOI cucteMn auepeHIiaIbHUX PIBHSIHD y YaCTHHHHUX TOXITHUX 3 KYCKOBO-CTAJMMH KOC(IIiEHTAMH Ta BiIMOBIIHUX CKAIIPHUX
XBIWIBOBHX PIBHSHB, SIKi € MATEMaTHYHIMU MOJCIISIMY B Cy4acHii eNeKTpoMHaMILl. Y MOPIBHSIHHI 3 BiIOMUMH pe3yJbTaTaMH JaHe
JIOCITIZKEHHSI € TIOBHICTIO JISTAJIHIM Ta TOYHHM, IO TapaHTye foro 6e3nocepenHe NpakTUIHE 3aCTOCYBAHHSL.

Kniouesi cnosa: nudepenuiansHa cucremMa MakcBeia, 3aralbHe XBAIBOBE PIBHSHHS BiTHOCHO YCIX CKAJIIPHUX KOM-
MOHEHT BEKTOPIB HANPY>KEHOCT] eIEKTPOMAarHiTHOTO MOJIS, JETAIbHUH TOUHHUI PO3B’SI30K.

1.Yu. Dmitrieva. Detailed explicit solution of the electrodynamic wave equations. Present results concern the general scientific
tendency dealing with mathematical modeling and analytical study of electromagnetic field phenomena described by the systems of
partial differential equations. Specific electrodynamic engineering process with expofunctional influences is simulated by the differential
Maxwell system whose effective research is equivalent to the rigorous solution of the general wave partial differential equation regarding
all scalar components of electromagnetic field vector intensities. The given equation is solved explicitly in detail using method of integral
transforms and irrespectively to the concrete boundary conditions. Specific cases of unexcited vacuum and isotropic homogeneous me-
dium were considered. Proposed approach can be applied to any finite dimensional system of partial differential equations with piece
wise constant coefficients and its corresponding scalar equations representing mathematical models in modern electrodynamics. In com-
parison with the known results, current research is completely thorough and accurate that implies its direct practical application.

Keywords: differential Maxwell system, general wave equation regarding all scalar components of electromagnetic
field vector intensities, detailed explicit solution.

Introduction. Since majority of electromagnetic field phenomena is described mathematically by
the systems of partial differential equations (PDEs), their exact solution remains always required.
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Literature review. The first step here concerns the so called operator diagonalization method. It
reduces the original matrix statement to the equivalent union of scalar problems where each of them
depends on the only one component of the unknown vector field function [1]. The second stage of
study is the mathematical simulation in terms of the corresponding boundary problems which engi-
neering and analytic correctness is based on the preceding diagonalization procedure [2]. Moreover,
essential simplicity of scalar formulation in comparison with the initial matrix structure strongly sup-
ports necessity of those aforesaid diagonalization methods.

Nevertheless, if the concrete applied problem is solved explicitly, it rather often happens that ob-
tained formulae are not specified in all desired details. Though for mathematicians such shortcoming
is not of great importance, in practical engineering research it can become a serious obstacle. Really,
in this case, direct computation appears impossible because final result is not complete. In its turn, the
value of analytic approach is lost. Thus in [3], various electrodynamic wave equations were consid-
ered. They represented particular cases of the general wave that was equivalent to the differential
Maxwell system for the expofunctionally excited media [1]. Though suggested solutions were rigor-
ous, they could not be directly applicable because some important interim expressions were missed.
Naturally, relevant boundary problems mathematically modeling engineering electrodynamic process-
es were not solved. This disadvantage of study causes the aim of the present article.

Aim of the Research consists in detailed complete explicit solution of electrodynamic wave
equations in the specific cases of media.

Main Body. The general wave equation regarding all scalar components of the unknown elec-

tromagnetic field vector intensities £, H was obtained in [1]
B30~ MVFy = (07 = 03)@us + 0, (0,00, + 0,04 ): VEL i v, i, (v, =13 k=1,2). (1)
In (1)
F=E, Fy=fl; § = A6 +Fj7, §,=Co — 4j°T;
Fo={F},  Fe=F.(xp20, (k=1,2); )
P =10utis Ou =0u(x,»,2,0), (k=1,2); A=rot, C=c+¢,0;, P=r+p,0;, 0;=0,%Ah,

where A= 23:8,-2 ;
i=1

0,=0/ot, 0,=0/0x, 0,=0/dy, 05=0/0z,

0f = PC =11,8,(9;)* + (OM, +7€,)0; +7G;

o,u,,&, =const >0 are the specific conductivity, absolute magnetic and electric permeability of
the medium accordingly.

The given functions jCT,E r = jCT,é “T'(x,y,z,t) describe the outside current sources and inten-
sities; 7 is the theoretical positive constant; A = const >0 is the signal parameter exciting the medium.
Activity of the medium corresponds to “—", and “+”” means absorption of signal by medium.

It is clear, that the general wave PDE (1), (2) for the expofunctionally excited media can be re-
written uniformly

G3(O3 - MF =1, (3)
where F' =F(x,y,z,t), f=f(x,y,z,t) are the unknown and the given functions from the left and the
right parts of (1) accordingly.

Further results concern detailed explicit solution of (3) in various media.

Results.

Unexcited vacuum. If €T =0, the studied unexcited (A =0) isotropic medium is vacuum

(6=0), and r =0, the simplest though important specific case of (3) appears
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o [ag _ , 4

where f follows from (1), (2)
f :(812 _Hagaa(z))(pki +ai(av(pkv +al(pkl); v il’ i;tvs lil’ (i,V,l:L_3; k =19 2) 5

¢ = Haaoch: ¢, =-rot jCT . Q)

It is easy to notice that in spite of the common differential operator from the left part in (4), the
unknown F and the given f scalar functions are different for each case of k,/,i,v from (5). This

fact is based on (1), (2).
Explicit solution of (4), (5) can be obtained using the method of integral transforms [4] by all
spatial variables (x,y,z) and not touching time argument ¢ that is accepted as the main one. Simplifi-

cation of future computation is supported by the following table of symbols: spatial variables from R,
are renamed into x=x,, y=Xx,, z=x;; the kernel of the i -th integral transform by the argument x,
with parameter p, is

K =K;(x;,p;)

and direct integral transform is determined by

b;
S, = J-Ki(xiapi)dxi 5

where a,, b, are the initial and the end points of the open contour of integration L;, (i=1,3).

Values of a,, b, can be either finite or infinite real, or complex as well [4]. For analysis of influ-
ence of integral transforms upon AF', (x,y,z)={x;, (= l,_3)} , the common scalar component of elec-
tromagnetic field intensity is rewritten like

F=F(x,y,z,t)=F(x;, i=1,3);1).

3
After application of the i -th integral transform to AF = Z@fF and double integration by parts,
i=1
the following expression is got

b; by
[@F)K (5, p)dx, = (K, (0.F) = @.K)F)., +[ (@K, Fdx, = ©

=5,(px, (V2i; v=13%0+n(p),F,, (i=13),
where
s, =s5;(pi>x, (V#I V:L_?’);t): (K:(0,F) = (0,K)F) |§i=a,: si(pi>xy,x,0), (I 1>v), (7)

the right or the left inferior index “#7”” everywhere in this paper implies conversion to the respective
transform.

Though in (7) i,v,/=1,3, but because of two last inequalities from (7), v,/ possess only two
values from three possible. Moreover, the second item m;(p,);F, from the right part of (6) has the
factor m,(p;) dependent only on the parameter p;, of the i-th integral transform. This item appears
owing to the operation 0?K;, (i = 1,_3) .

At last, “incomplete” i -th transform of F' by variable x;
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b, b,
Fo= Fy (o, (Vi v=1350= [F(x, (=13)0K,(x, p)dx, = [ FKdx,, (i=13).  (8)

Basing on (8), the “complete” transform of F' by all spatial variables (x,y,z)=(x;, i=1,3) is

. 3 b b b,
E,=F,(p, (=1350=F,(p.0)=| [ [ K, | B, = [ [ KoCroo K G P F (1o 0)e

v=l

v @ a )

3 —_—
p:UP[ =(p,p2,ps), ((=1,3),

i=1
where conditions for v,/ remain the same as for s;, (i = 1,_3) in (7).

Application of those required integral transforms by all spatial variables (x,y,z)=(x;, i=1,_3)

satisfying the specific engineering problem statement, takes (4), (5) into ordinary differential equation
(ODE) regarding corresponding transforms dependent on time argument ¢

2 2
K DUV [y (10)
der\ dt*> e,
In (10)
3 . 3.3 M - f
A=A P)=2p)s fi=T -2 [1[ K s (=13); o=l
i=1 i=1 v=l g, a%a

V#£L

and the product under the sum symbol X at the second expression from (11) looks similarly to (9):

5 b b b,
H.[dexv s; = jjKV(xv,pv)K,(x,,pl)s[(p[,xv,xl,t)dxvdxl , (WiIzil>v;i,v,0=1,3).

v=l g, a a,
V#1L

Additionally, in (11) f,. represents “complete” transform for f from (5) and is defined by its all

“incomplete” transforms, as it is shown in (9).
Since the aim of the research consists in the really rigorous solution of (10), (11) generated by the
originally formulated problem (4), (5), the explicit expression of f,. should be proposed in detail. The

external differential operator in (5) is0;. So it seems more natural to apply to f integral transform
by x; . Integration by parts in (4) with support of (6)...(8), gives “incomplete” i -th transform for f

bi

S =4+ (i (D) = 108,05) 4 i + (0,91 +0,04)K, |i:a, _I(aiKi)(av(ka +0,04)dx;, L 12)

vl izv, izl (i,v,1=1,3; k=1,2).

The i -th “incomplete” transform of ¢,; from (12) is

b b,
v Puii = v P (pisx, (v£i, v=13)0)= I(Pki (x; (=L3);0)K,(x;, p,)dx; = J.(pkiKidxi s (13)

q; :q[(p[:xv (Vii; V:L_?’); t): (Ki(ai(pki)_(ai[{i)(pki)&:a,: qi(piaxv:xlat)a (Valii; Z>V): (14)
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and factor m,(p;) remains the same as earlier in (6). It is explained by the analogous integration by
parts, as it is done in (6). Besides, all integral transformations are common for the whole (4). There-
fore, when the first two items are obtained in (12), operation 02K, gives the result equivalent to (6).
Basing on (12)...(14), the “complete” detailed transform of f is

b b
v U1 d2
Ju=1o(p:0)= J.J.KVKI (g; + (0,04, +0,0,)K; |i:a, Ydx;dx, +(ni(pi) —H.E, %) o Pr —

ay a

(15)
b b b, by by
j(&f@)[ [ [cpkav e, ~J 0 (ava)dvadxz + [k, [%Kz e [ ou (a,K,)dx,dedex,-,

a ]

where , o, ((=L13; k=12) is the “complete” transform of ¢, (i=13; k=1, 2); integrands inside
of the round brackets are got by the respective integration by parts.

Orders of integration are rearranged in (15) owing to the commutativity in pairs of the partial dif-
ferential operators.

Further substitution

d*F,
— =P =D, 16
i (t.p) (16)
reduces (10) to the equivalent simplified wave ODE in terms of transforms of electromagnetic intensities
d? A,
2 2\ =, 17
( o WSJ =1 (17)
Characteristic (performance) equation [5] of (17) has two simple roots
A,
Yip =%, [——. (18)
“118(1

Since p,, &, =const >0 according to the original problem statement, the numerical values of
(18) are completely determined by the sign of A, . The latter leads to three possibilities of existence
for roots (18):

— A, >0;

— A, <0;

— A, eC.

In its turn, the last three conditions evoke three different fundamental systems of solutions (FSS)
[5] for the homogeneous equation respective to (17). Later, inhomogeneous ODE (17) is solved uni-
formly in all three cases using method of arbitrary constant variation [5]. Thus, let at first A, >0.

. . . { A .
Then FSS is the following {e“, e‘“} , with y= |—%— | and creates the general solution of (17)
“’aga

O=C,(t,p)e" +C,(t, ple™. (19)
The unknown functions C;(¢#)=C,(¢, p), (j=1,2) in (19) are sought from the system [5]
C/(H)e" +C(t)e ™ =0;
{YC{ (e —yCi(D)e™ = f;

and are described by the formulae

C\(0)= 217 [e frar+ci(p), (0= —%yjewf,:dt +Ci(p). (20)
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Taking into account (16) and appropriate specific transformed boundary conditions for initial
wave equation (4), the unknowns C;(p), (j=1,2) in (20) are found explicitly. Substituting (20) for

(19), one gets exact expression of the unknown general solution for (17)
1 t =yt £ * * ot t £ * *
o, p) —2—y(ev (Jerfide s Ci(p))=en( Jer frdr+ (). 1)

Turning to (16), applying inverse integral operators regarding those direct ones from the left part
of (16) and then using (21), the final constructive solution of (10) is got while the first condition takes
place

F,(t,p) = [[ @, pyar =2iy Il (ew (Jer frde+Cr(p))=ev( [er s+ C;(p)))dﬂ G

. . /—A . .
Let now the second version A, <0 be considered. The roots (18) become +i | —= €C, fraction
l’laga

under the radical symbol is positive and i = J-1. Using notation
-A
y= "2 50 (23)
“118(1
the FSS for the homogeneous equation regarding (17) is written — {cosyz +isinyt} , and it forms the
general solution of (17)
O =C,(¢, p)(cosyt +isinyt)+ C,(¢t, p)(cosyt —isinyt) . (24)
In (24), the unknown functions C,(¢)=C;(¢, p), (j =1, 2) are found as the solutions of system [5]

Cl=—2,(j=12). (25)

{C{(cosyt+isinyl)+C;(cosyt—isinyt)z0; oC
ot

C/(—ysinyt +iycosyt)+ Cy(—ysinyt —iycosyt) = f;,
Substituting solution of (25)

1 . :
Cual0) =5 [ (Esinyr-+icosyi) £t p)dt-+Ca(p)
for (24), after simple computation one gets

D= l(sin(yt)J. (cosyt) f;:(t, p)dt — cos(yt)J.(sin vt) f2(t, p)dt +(C; — C;)e ) , (26)
Y

where C;(p), (j=1,2) have the same meaning as in (20) ... (22).
Similarly to (22), application of the double integral operation to (16) in the presence of (26),
leads to the general solution of (10) in the second case
F,(t,p)= [[@(t, p)ir* =
1ep(. . | 27)
=~ [[(sin(r [ cosro) ;2. pyde — cos(yo) [ sinye) ¢, p)de + (Cs = e )dr?
Y

The last third version A, € C, mathematically implies

A,
——=a+iBeC;
}’l'aga

A A,
a=Re—", f=Im—=€R,
“’aga “’aga
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where

A, 1
Y=, |——=t—| Ja+a>+p> +i—B , v,=Rey, v, =Imy (28)
Ha€q \/E Ao +ja? +p2
is easily found.
Then the desired general solution of (17) is

© = C,(t, p)exp(y,1)(cosy,t +isiny,t) + C, (1, p)exp(=y,1)(cos y,t —isiny,t), (29)
and the unknown functions C,(¢)=C,(¢, p), (j =1, 2) represent the solutions of the following system [5]
C exp(y,t)(cosy,t +isiny,t)+ C; exp(—y,t)(cosy,t —isiny,t) =0; C = oC;
(7, +i72)(Cexp(y,1)(cos Y, +isiny,t) + C; exp(=y,1)(—cosy,t +isiny, 1) = f,r, ' ot ’
and
1 exp(Fy,t) f.r(t, p)dt .
€)=t [REOL DV ) (30)
2(y, +iy,)?Y cosy,ttisiny,t

In (30), C;(p), (j=1,2) keep the same information as earlier for the preceding first and second
versions. Substitution of (30) into (29) gives the required general solution of (17)

®= 2i(evf [e £t prar—er [er f:(2, pyde+ Cren - Cier ) 31)
Y

where v is from (28).

At last, returning to (16), using double integration operation in (16), the general solution of the
transformed wave equation (10) for the third version is

F, (¢, p) = [[ (. p)ie* = 2% Il (ew ( [er s dt) e ( fer f,:dz) 4+ Cret —Cle )dﬁ . (32

where 7y is identical to (31), (28);

® is chosen from (31).
Comparing (32), (22), it is easy to find that in both first and third cases, while ye R and y e C,

the unknown general solution for (10) can be written uniformly
1
i — vt =yt * —p Yt t * * oyt * 5=yt 2
F,=F,(p)= ZyJ.J.(e/ (J.e Vﬁ,,dt) e (J.ey ft,.dt)JrC1 e —Cse™ )dt . (33)

Influence upon (33), (27) of all inverse integral transformations S;!, (i =1,_3) that are responsi-

ble for originally applied, gives the wanted solutions of the general wave equation (GWE) (4) with
respect to all scalar components of electromagnetic field vector intensities

3
F=F(x,y,z,0)=] [ S:'F, . (34)
i=1

In (34), expressions for F,, are defined by (27), (33).

Unexcited isotropic homogeneous linear medium.

Now, let the unexcited isotropic homogeneous medium be considered, and it differs from the pre-
ceding one by the presence of o> 0. Even such distinction as ¢ # 0, generates essential complication
of GWE in comparison with (4),

ao(ao+3j[ao(ao+3j— a jF: A (35)
€, € ) MHiEq (1.80)?

which the known function from the right part is written below
f = (812 - “’agaé(z))(pki + ai(avq:)kv + al(pkl); ' Za l * v, l * Za (i,V,l = 19 39 k = 17 2)7
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32 = 8,0, (ao +83] (36)

a

It is clear, that the difference between f in (36) and the similar expression (5) consists only in

appearance of operator é% instead of 03, while functions ¢,, (k=1,2) are completely identical to
those from (5). Denoting differential operator

32 =0, [ao +3) (37)
8(1
and the unknown function
0F =, (38)
one gets the simplified equivalent form of the original GWE
(53— A J@: A (39)
&, (1.8,)?

where f is from (36);

@ is described in (38);

02 is given by (37).

As it is previous shown, all corresponding integral transformations that are applied to (39) by the
spatial arguments (x, y,z), lead to the ODE in terms of transforms regarding temporal variable ¢

A A . (40)
de\ dt ¢ W&,

In (40) A, remains almost the same as in (11), accurate within change of ' to ® everywhere in
(6)...(9), (11), and

N P o B s
fi = Fi P =i Z lv‘l[aijvdxv (41)

All other symbols in the round brackets from (41) are described previously concerning (11), and
change of F' to @ is mentioned above.

Solution of linear ODE with constant coefficients (40), (41) is done as previously, by the well
known classical methods [5]. So the roots of the performance equation for (40) are

mlzz_i 11 1+% (42)
' 2¢ n,o?
and completely depend on A, since o, ,, €, =const >0 basing on the original conditions for

GWE (1). Therefore as it is shown previously three versions of (42) should be considered:
2

a

1. 1+ 48“—A2” >0 A, > —LZ‘—G €R, and o, are two different real roots from (42);
“’aG Sa
2
2. 1+%<0<:>A,,, <—&<0, o, =—2 15i /- 1+% , i=+/—1, expression
“’acz 48[1 | 28(1 “’acz

under the symbol of J s positive, and , , is the pair of complex conjugate roots;
+ 4811Atr
H,0?

3.1 ceCoA, eC, A, =a+iB, a=ReA,, B=ImA, ;0,, = —2i(1¢ (x* +iy*)), (43)
811
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2 2
where 1+ 4, o |+ it B=x*+iy*, x*=il 1+ 4e, o+,[| 1+ 4z, ol +4 2, Bl |
“’acz “aGZ 2 “’acz Han “aGZ

L 2ep

02X

Taking into account numerical values and structure of ®,, in all three cases from (43), FSS for

the homogeneous equation respective to (40) can be written uniformly {exp(m,t), exp(w,?)} . Simulta-
neously, it forms the general solution of the inhomogeneous equation (40) for all cases (43)
®, =D, p)=C (¢ p)exp(e?) + C, (2, p)exp(®,f) . (44)

Equation (44) is sought using method of arbitrary-constant variation [5]. In other words, the un-

known functions C,(¢) = C,(¢, p) , (j =1,2) represent the solution of the following system
{C{ exp(w,t) + C} exp(w,t) = 0; _oc, (=12)
Clo, exp(w,t) + C'o, exp(w,t) = fr, ' ot ’

and are determined by formulae

C1,2 (t,p)=4

[exp(-0,,0 £ (¢ p)dt +Cia(p) (43)
O, — 0,
where Cf,(p) have the same meaning as in the previous paragraph.
Further substitution of (45) into (44) gives
D, = ! x
G =@ (46)
X exp(nn) | exp-nt) £ ¢, )t —exp(cos) [ exp(—ut) £ ¢, )+ C (p)explent) G (p)exp(eon) .
In its turn, explicit expression (46) allows solving (38), (37) by means of the same transforms that
is used for (39), (40). Namely,

dfd . °lp _o,. @)
dt\ dt ¢

It is clear, that (47) is the particular operator case of (40), but accurate within respective changes:
instead of ®, in (40), here F, appears; f,; from (40) becomes @, from (46), and the latter is

a

ir

. A,
from the left part of (40) degenerates into zero for (47), though ——
€

M(l a a~a

remains in the formula of @, during all preceding computations relating to (40).

ODE (47) is the second order linear inhomogeneous with constant coefficients, its characteristic
equation has two roots {0,—c/¢,}, and corresponding FSS {1, exp(—(c/¢,)t)} forms the general solu-

tion of (47) [5]

known already; at last,

F, =F,(t,p)=C\(t,p) + Cy(t, p)exp(—(c/e,)t) . (48)
As earlier, the unknown functions C,(¢)=C;(¢,p), (j=1,2) in (48) are found by the method of
arbitrary-constant variation from the system

{CHC; exp(~(o/e,)1) =0; 29 o)

Cj(-o/e,)exp(~(c/e ) =D, ' ot
and are given by formulae

C(t.p) =" [®, . p)t+Ci(p)., Ca(t.p) === [exp((o/e,))®, (1. p)dt ~Ci(p), (49

where E{jz (p) have the same meaning as the previous constants C},(p) .
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Substitution of (49) for (48) forms the required solution of (47). It represents the transform for all
scalar components of electromagnetic field vector intensities

Fy = Fy(t.p) =" [@, (1. p)di —exp(~(6]2, )0) [ exp((/2, )., (1. p)dt ) +

+C (p) —exp(~(c/e))C; ().
Analogy between (50) and (34) is obvious. Application to (50)

3
F=F(x,y,z,t)= HSIIFW ,
i=1

creates unknown solutions of the GWE (35) describing all scalar components of electromagnetic field

(50)

vector intensities in the framework of physical engineering problem statement. Formula, S;! (i= 1,_3) ,

as earlier, determine all inverse integral transformations regarding originally used.

Conclusions. Both specific electrodynamic problems generated by the expofunctional influences
and mathematically simulated by the general wave equations regarding all components of the electro-
magnetic field vector intensities, are solved explicitly in detail. Obtained final formulae are irrespective
to the concrete boundary conditions and unite all required components of intensities. Rigorous results
allow studying necessary engineering and physical effects using given analytic expressions with their
appropriate direct computation and without any approximate calculus. Suggested approach can be ap-
plied to any kind of the finite dimensional system of PDEs with piece wise constant coefficients and its
corresponding scalar equations representing mathematical models in current electrodynamics.
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