u] =,

3anpononosano anzeOpaivnuii mMemoo 3HAX00NCEHHA Oui-
nox panzie PageRank dns cmopinox catimie. QO6cse o6uucnens
3anpononoeanozo memooy He 3anencumns 6i0 3nauenns Koediui-
enma demnipyeanns, wo 003601€ ompumyeamu 6iivu mouni
ouinku panzie PageRank, 6 nopiensnni 3 ananozamu. Biominnoro
0C06IUBICMIO 3aNPONOHOBAN020 MEMOOY € NOCAI006HE BUKOHAN-
HSL 00UUCTIeHb 00HOUACHO 3 pOBGOMOto anzopummy 06x00y zpaga.
IIposedenuii nopienanvruil ananis anzopummie 06xo0y zpadis
nokxasae, wo Ha 6iOMiHYy 6i0 anzopummy nowyxy 6 enubumy
anzopumm nowyKy 6 wupuny oae 0iavu Ynopsaoxkosany Mampu-
ut0 nepexodie, axa mae eéueand 6n0uno Xeccenbepzoeckoi.
Buxopucmanns yiei 06cmagunu 00360auU10 iCMOMHO CKOPOmMu-
mu 06cste 06uucaens 3anpononosanozo memoody. Ompumani pie-
HAHHS, WO ONUCYIOMD 3ANPONOHOBAHUN MEMOO, MAIOMb OJL0UHY
cmpyxmypy, aKa 0036041€ ePeKmueHo po3nodiiamu 6eco 00cse
onepauiii na napanenvni obuucao6anvii nomoxu. Buxodsuu
3 M020, WO OCHOBHA HACMUHA 06UUCIEHb MOJCe OYymU BUKOHA-
Ha nid uac GUKOHAHHA aJzopummy 00x00y epada, eusnaueni
YMOBU, NPU AKUX 3ANPONOHOBAHUL Men00 00360JLE OMpPuUMa-
mu ouinky paneie PageRank weuodwe, ninc 6idomi imepauiiini
anzopummu. O6acmio 3acmocosHoCmi po3pooderozo memooy 6
nepuy wepey € euxopucmanis 1ozo npu 6esnocepeonii nepesip-
ui 00CMOBIPHOCII POIMIUEHHA PEKIAMHUX MaAMepialié Ha 6i0-
noeionomy eed-pecypci, momy 60Ha oOMedNceHA OKPeMUMU Cali-
mamu abo ceemenmamu inmepremy 3 Kiaokicmio cmopinox ne
oivwe 104—105

Knrwouosi cnosa: epagp caiimy, paneu cmopinox, mampuys
nepexodis, xoeiuicum odemnipyeanns, mampuuys mese-
nopmauii
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The constantly increasing use of the Internet in all areas of
human activity has made it one of the most important places
for the development of the advertising business [1]. However,
when posting an advertisement, the advertiser does not di-
rectly interact with the owners of the websites that host the
advertisement. On the way from the advertiser to the website,
there is a large number of intermediaries, which include adver-
tising agencies, ad networks [2], arbitrage networks (Trading
desks and Ad Exchanges [3]), SSP and DSP platforms [4, 5].
On the one hand, it facilitates the activity of the advertiser,
increases the effectiveness of advertising, and reduces its cost.
On the other hand, there are additional chances for fraud.

Therefore, it is extremely topical to verify precisely the
reliability of posting advertising materials on a relevant web
resource [6—8]. As the structure of web resources dynami-
cally changes, one of the primary tasks is to analyse the cur-
rent structure of a site and the current ranks (importance)
of its pages. This can help determine the effectiveness of
advertisement posting in the next steps.

The questions of analysing the structure of sites and
finding the ranks of their pages have been widely and fully
covered in published studies, for example in [9, 10]. However,
they are considered separately from each other there. It is as-
sumed that the structure of a site is analysed first, and then
the ranks of its pages are determined. This approach leads to
the fact that when working with multicore or multiprocessor

computers, not all computing powers are used. Therefore, it
isimportant to develop algorithms for determining the ranks
of site pages, the main amount of which can be done in paral-
lel with the work of the algorithm for analysing the structure
of the site. This will make it possible to use the calculator
more fully and get the result faster.

One of the most well-known algorithms for ranking pag-
es of websites is PageRank, proposed in [11]. However, due
to the presence of pages with no outbound links, the task
of estimating the ranks in accordance with this approach is
degenerate. To solve the situation, various types of regular-
ization are used. The greater the level of regularization, the
easier it is to obtain a solution, but the greater the deviation
of the estimates obtained from the idea proposed in [11].
Therefore, it is important to develop algorithms for finding
PageRank estimates that differ from those known by the best
ratio of the volume of necessary computations and the level of
regularization.

2. Literature review and problem statement

The most effective way to represent the structure of a site
is to represent it in the form of a graph the vertices of which
are pages of the site, and the edges are defined by the links
from one page to another. To determine the ranks of pages,
there are many approaches, but the most famous of them is
PageRank, proposed in [11]. The main idea of this approach




is that the rank of a page u linearly depends on the ranks of
the pages that refer to it:

PRu)=Y PL IE(V’;),

where PR(v) is the PageRank of a page v; L(v) is the total
number of outbound links on the page v; B, is the set of pages
that refer to the page u.

Assuming that there is at least one reference to other
pages on each page, equation (1) is a particular case of the
vector equation [12]:

©)

Av=v, 2
where v is the vector of the ranks of site pages:
A=PT,

P is the matrix of transitions of a dimension N XN, a non-
negative matrix with coefficients:

1/deg(i), if the i-th page has
a link to the j-th page;

0, if the i-th page does not have
a link to the j-th page;

deg(i) is the number of outbound links on the page i,
p; 20 and Zpij.:l,
J

N is the number of pages on the site.

The solution of equation (2) is considered either as finding
the eigenvector of the matrix A, corresponding to the maxi-
mum eigenvalue of this matrix equal to 1, or as a solution of
the system of equations [12, 13]:

(I-A)o=0, 3)

where [ is an identity matrix.

From the theory of Markov homogeneous chains, where
a similar graph model is used, it is known that equation (2)
has a solution, and it is unique (within a multiplier) only if
the graph is strongly coupled and aperiodic [9]. The second
condition for web graphs is automatic. And the first con-
dition is not fulfilled if the site has the so-called ‘hanging’
pages — pages that do not have links to other pages. Hanging
pages give zero rows in the matrix of transitions P and, ac-
cordingly, lead to its degeneracy.

The most popular approach for solving the problem of
hanging pages is to modify the matrix P in such a way as if
hanging pages contain transitions to all pages [9, 12, 13]:

: 1
P'=P+=D, 4
N )

where N is the total number of pages on the site; D is a matrix
of the dimension N x N, whose i-th rows contain ones, and
the remaining rows are zero for all i-numbered pages.

In addition to solving the problem of hanging pages to
ensure strong coherence of the graph, another modification of
the matrix of transitions is made — ‘teleportation.’ Physically,

it isinterpreted in the way as if a user who is on any page of the
site follows, with a probability @, one of the links available on
this page, and with a probability (1-a), goes to any other page:

o (=)
P—ocP+7N J, )

where J is a matrix with all elements equal to 1.
As aresult, rank estimates are found from the solution of
the modified equation (2):

Av=0, (6)

where vis the vector of the ranks of the site pages, A" = (P")".

The whole set of approaches to solving equation (6) can
be divided into two groups [14] — algebraic methods and
iterative methods.

Iterative methods assume a consistent approximation
to the desired estimate of the vector of ranks, producing
iterations. One of the most popular iterative methods is the
power method [15]:

M= /A, 7

where o* is the estimate of the vector of ranks v at the k-th
iteration;

[ = X

i

is the norm of the vector X, equal to the sum of the moduli
of its components x;.

As the initial approximation, we take the vector o7, all
elements of which are equal to 1/N. Calculations stop after
reaching

ot~ <8, ®)

where & is a small value.

To obtain faster estimates of ranks, either linear algebra
methods [15, 16], such as LU decomposition and QR algo-
rithm, or the Jacobi, Lanczos, Arnoldi [17] and Gauss-Seidel
methods are used. Or heuristic methods are involved. For
example, the extrapolation method, which is based on the
power-law method [18], or the Arnoldi method [19]; however,
instead of computations on some iterations, there is simply
extrapolation to obtain estimates of the next step. Or an
adaptive method [20, 21] is used, which is based on the fact
that the elements of the vector o* converge at different rates.
Therefore, for the elements that have already practically
converged and do not change, no calculations are made. In
addition, a large number of studies are devoted to the accel-
eration of obtaining estimates by iterative methods due to
their modification for calculating on multicore or multipro-
cessor computers [22-27].

For example, in [22], massive parallelism of GPUs is
used to calculate PageRank, and in [23], a partitioning and
compact representation of a site graph is proposed to match
the memory size of single processors in an array of GPUs.
In [24], a parallel algorithm for computing PageRank is
proposed, based on the use of the distributed programming
concept MapReduce and the list of contiguities in multipro-
cessor arrays. The load balancing capabilities in comparison
with memory-based methods in the multiprocessor CUDA
architecture are examined in [25]. In [26], a method is



proposed to accelerate the calculation of PageRank in the
multiprocessor CUDA architecture by searching for special
structures in the site graphs that allow parallelizing the com-
putations to the maximum number of threads. In work [27],
it is suggested to accelerate the calculation of PageRank on
distributed multiprocessor computers due to the use of the
MapReduce concept and the Hadoop framework.

Algebraic methods presuppose an exact solution of equa-
tion (6) in the form [14] of

v=|:1—oc(PT+1DT)]_ .(1_“)@ 9)
N

N

where e is a vector of a dimension N, all elements of which are
equal to 1; I is the identity matrix of the size N xN.

In search programs with very large transition matrices,
with N of the order of 107, iterative solutions of (2) are used
with 0=0.85...0.9, where a is also called the damping coeffi-
cient. The smaller the value of a, the higher the convergence
rate of the iterative methods, but the less the accuracy of the
solution for the page ranks in terms of formula (1) [12, 13, 28].

When verifying advertising companies, a particular web re-
source (site) is analysed; N usually does not exceed 10* ... 10°,
It is, therefore, desirable to obtain the most accurate solution
of formula (1). In addition, it should be noted that the solution
of equation (6) by iterative methods usually begins only after
the structure of the web resource is completely determined,
that is, when the matrix P is known. At the same time, the by-
pass of the site graph (definition of its structure) is iteratively
performed, and it takes a significant amount of time that could
be used to calculate page ranks. This is especially true when all
operations are performed on a powerful calculator containing a
large number of cores or processors. Therefore, it is of interest
to develop a method for calculating page ranks by an algebraic
method [14] the volume of operations for which does not de-
pend on the proximity of & to 1 and which takes into account
the features of the graph traversal algorithm.

3. The aim and objectives of the study

The aim of the study is to develop a method for calculat-
ing page ranks with an algebraic approach that takes into
account the features of the graph traversal algorithm.

To achieve the aim, the following tasks are set and solved:

— to analyse the features of the algorithms for traversing
graphs and to identify opportunities to reduce the amount
of calculations, as well as to produce part of the calculations
while the graph traversal algorithm is being used,;

— to take into account the structural features of the tran-
sition matrix when constructing a step-by-step calculation
of the ranks;

— to determine the order of the operations for the method
obtained and to find the conditions under which the opera-
tions’ volume is smaller than with the iterative methods of
determining the ranks.

4. Analysis of the features of graphs traversal algorithms

As the structure of websites dynamically changes with
time, when verifying advertising companies, it is considered
that this structure is a priori unknown and it is necessary to
determine it, starting from the main page of a website.

Let us consider two main approaches to the construction
of algorithms for traversing graphs [10]. These are a depth-
first search (DFS) algorithm and a breadth-first search
(BFS) algorithm.

We represent the graph of the target site in the form of

G=V,E),

where V is the set of all pages of the site, or the set of all
vertices of the graph G; E is the set of the pairs (&, v), where
u,veV are connected by an edge of the graph G, that is, on
the page u there is a link to the page v.

We assume that we know the initial vertex of the graph
G vg,0as the main page of the site.

The DFS algorithm is aimed at a maximally rapid
movement into the interior of the graph G. Upon falling
into some vertex of the graph wj, the algorithm forms
a set of the vertices of the graph that it has already by
passed, Dj:

D,=D_ +{w,), j=123, .. (10)

D, ={w,}, where w,=1,,.

Next, we find the set of the vertices of the graph G to
which there are links on the page wj:

B ={b

= (b, b ). (11)
From this set, we remove the vertices which the DFS
algorithm has already bypassed:
W,=B,~(B,ND,). (12)
From the set Wj, by some rule (for example, the first out-
going link on the page), we select one vertex wj.4, into which
the algorithm proceeds in the next step.
If the set W; is empty, one step back is made to form a
new set:
W'1-1 = Bj—1 - (B_H N Dj ),

J

(13)

and the vertex w4, is selected from it.

If the set W]L is also empty, then it is necessary to roll
back one more step and so on. The traversal of the graph is
completed when it is impossible to form a nonempty set W"
and to roll back to the initial vertex of the graph.

In contrast to the depth-first search (DFS) algorithm,
the breadth-first search (BFS) algorithm involves sequential
traversal of the graph over layers. By the i-th layer, we mean
a subset V; of vertices of the graph G spaced at the shortest
distance to i edges from the vertex vgo. If any of the j-th
vertices of the i-th layer of the graph v;; is hit, the BFS algo-
rithm generates a subset of the vertices of the graph that it
has already bypassed — P; ;:

P, ={v,;}+P, j=12 .., (14)
where
P,= PH,jmaxiv i=12, .., F,=79,

Jmaxi is the maximum index j for the vertex v;4; in the
layer V.



Further, the BFS algorithm finds all vertices of the
graph G that are separated from the vertex v; j at a distance
of one edge:

F;,j = {fi,jv -f;',jZ’ g 15)
the (i+1)-th layer of the vertices of the graph is made up of
new detected vertices, separated from the vertices of the i-th
layer at a distance of one edge:

Vi ={(F,~(F,NP,)):Vo, eV} (16)

Bypassing of the graph by the BFS algorithm is termi-
nated when the next set V;.;is empty.

From the comparison of the DFS and BFS algorithms,
it is clear that the breadth-first algorithm provides more
ordered subsets of the graph’s vertices — layers. Moreover,
proceeding from the rules of layer formation in the BFS
algorithm, it is clear that the vertices of the i-th layer have
references only to the vertices of the (i+1)-th layer and do
not have references to the vertices of the (i+2), (i+3) or other
layers. Therefore, when the vertices of the graph are ordered
in layers by the BES algorithm, the transition matrix P will
be of a lower blockwise Hessenberg matrix type [29]. An
example of the matrix P for eight layers is the following:

A, A, 00 0 0 0 0
Ay Ay, Ay 0O 0 0 0 0
A31 A32 A33 A34 O O 0 O
P: A41 A42 A43 A44 0 O O 0 (17)
A51 A52 A53 A54 A:)‘? A56 O 0
A61 AGQ A63 AS/I AGS AGG A67 0
A71 A72 A73 A74 A’75 A’76 A77 A’78
A8 1 A82 AB% A84 A85 A86 A87 A88

The size of the matrix P is equal to NxN, where N is
the total number of pages on the site (the number of verti-
ces in the site graph). A; denotes blocks containing links
between the vertices of the i-th layer and the vertices of the
Jj-th layer. The size of each block A;; is equal to n,xn;, where
n;is the number of vertices in the i-th layer of the graph, n;
is the number of vertices in the j-th layer of the graph. Since
the matrix of transitions for the BFS algorithm has a block
view, and the Aj; blocks, for which j>(i+2), contain only
zero elements, this can be used to develop an algorithm for
calculating the page rank of the target site. In addition, it
should be noted that the block view of the transition matrix
P creates prerequisites for all calculations in the rank estima-
tion algorithm to have a block view. This helps parallelize ef-
ficiently the computations to threads for their processing
by multicore and multiprocessor computing structures.

5. Development of a modified algorithm for estimating
PageRank

We assume that the BFS algorithm is used to bypass
the graph of the target site. As a result, we obtain a ma-
trix of transitions P structured with layers.

To ensure the stability of the subsequent computa-
tional process as to (4) and (5), we similarly modify the
transition matrix P as follows:

- o (1-a)
Pl=aP+ D), (18)

where 0<o<1; Jis a matrix of teleportation, with the size
N x N, corresponding to the matrix of transitions P; all its
elements standing in the places of blocks A; (j<i+1), are
equal to 1, and all its elements standing in the places of zero
blocks j>i+1, are equal to 0; D is a matrix with the size
N xN, which corresponds to the ‘hanging’ pages; for each
‘hanging’ page (not having outgoing links) with a number
m, the corresponding m-th row of the matrix D contains
ones in the places corresponding to the blocks A; with
j<i+1, and zeros in the places corresponding to the zero
blocks (j>i+1), and all other elements of the matrix D are
equal to zero.

The PageRank vector v of the ranks is defined as the

dominant eigenvector of the matrix where A= (P ) :

Av=vo.

(19)

Taking into account (14), equation (15) is equivalent to
the following:

[I—a(PT +1D7H0: a-o,
N N

(20)

where e is a vector of a dimension N, all elements of
which are equal to 1; I is the identity matrix of the size
NXN.

The algebraic solution of (20) is defined as [12]

0= [I—a(PT +1DT):| a-,
N N

ey

We introduce the notation for the matrix beeing invert-
ed, obtained at the k-th step of the operation of the BFS
algorithm as follows:

B, =1, —a[p,}‘ +]$D,§‘J, (22)
k

where the matrices By, I, Py, and Dy, have the dimensions
of N,xN,; Ny is the total number of vertices of the graph
obtained by the BFS algorithm in % steps.

(23)

The matrix By, similarly to the form of the matrix P in
(17) and taking into account the transposition, is the upper
blockwise Hessenberg matrix:

k k k k k k
G, ¢, Cy . . . C1(k—2) Ci(k—1) C,
k k k k k k
Cy Gy Cy CQ(k—Z) C2(k—1) Cy,
k k k k k
0 G, Cy C3(k—2) CS(k—1) Cy,
.(24)
k k k
C(Iafz)(k—Q) C(k—2)(k—1) C(/ﬁ)k
k k k
C(k—1)(k—2) C(k—1)(k—1) C(k—1)k
k k
o . . . 0 Ck(,H) Cy,



Then the matrix Bp+y can be represented in the block

form
Bk chH ]
By, = . , (25)
o [®k+1 C(kk-:1)(k+1)

where the matrix ©,,, has a dimension of n,,, xN,, and the
matrix @,,, has a dimension of N, xn,,:

0,,=(000...Cily), (26)
+ -+ + T

q’Zﬂ = (C1k(k1+1) Cf(k1+1) le(k1+1)) . 27)
In accordance with the Frobenius theorem [29],

B (BE +B;'0, H,1©,,B,' B;1d>k+1H;i1] 28)

k1 T - _ _ ’
-H k+11®k+1Bk1 H k+11
where
Hk+1 = C(k/:jn(km - ®k+1B};1ch+1‘

Thus, expression (28) makes it possible to calculate, step-
by-step, the matrix B!, and the grades of the graph vertices
that have already been bypassed by the BFS algorithm, using
equation (21). At each (k+1)-th step, it is necessary to invert
only one matrix Hy of the size n,,, xn,,,. All other operations
are block multiplications and additions of the matrices. The
total number of multiplication and addition operations to be
performed at the (k+1)-th step is given in Table 1.

The number of operations of multiplication and addition at the (k+1)-th step

We also assume that k1 and N,,,>n,,,. Then the to-
tal number of multiplication operations at the (k+1)-th step
is of the following order:

Uy =O(NZ, X (2n,,, +1). 29)

If we assume for simplicity that all n; are equal to each
other and equal to n, then the total number of multiplica-
tions in the steps from 1 to k for calculating B;' is of the

following order:
) = O(éN}?H

k
U, =O(n3

Jj=1

The total number of additions has the same order.

For comparison, the total number of multiplications (sim-
ilarly, additions, too) of fast iterative methods [12, 28, 30]
is of the order

xR+ )x(2k+1)
3

). (30)

Upr =O(L5XN:+1)’ 3D

where L;is the number of iterations that must be done to
achieve

where v; is the estimate of the vector v at the j-th iteration.
For the typical values of =107, «=0.85and N,,, ~10",
the required number of iterations for iterative methods [30] is

<8, (32)

O, 01

I, =50 ...100.

Table 1 However, this number increases signifi-

cantly as a approaches 1 and the necessary &

decreases [30].

Operation Mllltlphcatlon Addition The exact PageRank value for the page
D, N (nxn,.,) - u is determined by equation (1). The pa-
= rameter o is introduced in (5) to regularize
Cf,,f“(,,ﬂ) Ty X My My the resulting solution, and the closer it is
0, _—— B ‘Fo 1, the resulting solution is closer to the
- - ideal value. '
0,.B;’ n, xn, X(Z"i) n, X, —1)X(Z"i] At the same time, the volume of calcu-
= =t lations by the proposed algebraic method
k k does not depend on a, and the accuracy of
0B, '@,y (; "i) X, (; "= 1) X, finding the fanks of the pages is dctcrmi}rllcd
- - . only by the accuracy of the calculations.
Hyn a it It should be noted that iterative meth-
Hl o(ny.,) o(n,,) ods begin calculations when the site graph
; P is fully known. At the same time, in accor-
o, H, ( niJXn}fH (Zn,)XnM X (m,, —1) dance with the proposed algebraic method,
P =]

—1 -1
Bk <I>k+1ch+1

i=1

o

k
)X(zni]x My
it

the amount of calculations specified in (30)
can be made while the graph of the site
is traversed by the BFS algorithm. After

k

(0

i=1

-1 -1
_Hk+1®k+1Bk

) XMy X (nk+1 - 1)

traversing the graph, only U,y operations
remain (formula (29)). Proceeding from a
comparison of formulas (29) and (31), we

—1 -1 -1
B, @, H,,0,,B, n

2 k
i X nk+1 i
i=1

J x(ny,, —1)

obtain that for

B,'+B,'®, H,0, B,

b

2
i=1

k

L, >(2n,,,+1), (33)

]

the proposed algebraic method requires less

kel
Upiy

(Zn—i

computation at the last iteration, which al-
lows getting the necessary PageRank values
faster.

J3)




6. Discussion of the developed algebraic method for
calculating PageRank values

The results obtained in this study are based on the fact
that, in contrast to known works, the calculation of ranks
is carried out simultaneously with using the algorithm for
traversing the graph in breadth. Taking into account the
structural features of the transition matrix obtained at each
step of the algorithm for traversing the graph in breadth, it is
possible to construct a step-by-step algorithm for calculating
the ranks.

The advantage of the developed method of determining
ranks is the independence of the volume of calculations
from the damping coefficient. The proposed step-by-step
calculation of rank estimates is oriented to multicore and
multiprocessor architectures and allows more efficient use of
the computing device.

The applicability of the developed method is limited to
Internet sites or segments with the number of pages not
exceeding 107 or 10°. The spread of this method to segments
of the Internet with a large number of pages requires further
investigation of the peculiarities of the transition matrix in
particular cases.

Estimates for the volumes of computations given in
formulas (29) through (31) are upper estimates, since they
assume that all the matrices involved in the computations
are completely filled. On real websites, the number of links
on one page usually does not exceed 5-10. Therefore, most of
the elements in the matrices C(y,, Cirtyyuny, and @, have
zero values, which drastically reduces the number of floating
point operations that need to be performed.

It is also noteworthy that the proposed algebraic method
of calculating PageRank at each step contains operations of
addition and multiplication of matrix blocks of a small size
and only one operation of inverting a matrix, again of a small
size. This makes it easy to split the entire number of compu-
tations into parallel computational threads using multicore
or multiprocessor computers.

7. Conclusions

1. The analysis of the algorithm for traversing the graphs
of sites in depth did not reveal any features of the resulting
matrix of transitions. At the same time, the algorithm for
traversing the graphs of sites in breadth arranges the pages
of the site into layers, which reduces the matrix of transitions
to the blockwise Hessenberg type. The presence of a large
number of zero blocks in such a matrix was taken into ac-
count when developing the algorithm for calculating ranks.

2. The algorithm for calculating the PageRank values is
based on a step-by-step estimation of the inverse modified
transition matrix on the basis of the Frobenius theorem on
inversion of block matrices. At each step of the algorithm for
traversing the site graph in breadth, there is a next layer of
graph vertices and, accordingly, a step of the algorithm for
computing the inverse transition matrix is performed.

3. The comparison of the computational volume for the
new algebraic method and iterative methods has shown an
advantage of the proposed method in situations where only
one site or a relatively small segment of the Internet is ana-
lysed, and it is required to use a damping factor close to 1.
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