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computers, not all computing powers are used. Therefore, it 
is important to develop algorithms for determining the ranks 
of site pages, the main amount of which can be done in paral-
lel with the work of the algorithm for analysing the structure 
of the site. This will make it possible to use the calculator 
more fully and get the result faster.

One of the most well-known algorithms for ranking pag-
es of websites is PageRank, proposed in [11]. However, due 
to the presence of pages with no outbound links, the task 
of estimating the ranks in accordance with this approach is 
degenerate. To solve the situation, various types of regular-
ization are used. The greater the level of regularization, the 
easier it is to obtain a solution, but the greater the deviation 
of the estimates obtained from the idea proposed in [11]. 
Therefore, it is important to develop algorithms for finding 
PageRank estimates that differ from those known by the best 
ratio of the volume of necessary computations and the level of 
regularization.

2. Literature review and problem statement 

The most effective way to represent the structure of a site 
is to represent it in the form of a graph the vertices of which 
are pages of the site, and the edges are defined by the links 
from one page to another. To determine the ranks of pages, 
there are many approaches, but the most famous of them is 
PageRank, proposed in [11]. The main idea of this approach 
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1. Introduction 

The constantly increasing use of the Internet in all areas of 
human activity has made it one of the most important places 
for the development of the advertising business [1]. However, 
when posting an advertisement, the advertiser does not di-
rectly interact with the owners of the websites that host the 
advertisement. On the way from the advertiser to the website, 
there is a large number of intermediaries, which include adver-
tising agencies, ad networks [2], arbitrage networks (Trading 
desks and Ad Exchanges [3]), SSP and DSP platforms [4, 5]. 
On the one hand, it facilitates the activity of the advertiser, 
increases the effectiveness of advertising, and reduces its cost. 
On the other hand, there are additional chances for fraud.

Therefore, it is extremely topical to verify precisely the 
reliability of posting advertising materials on a relevant web 
resource [6–8]. As the structure of web resources dynami-
cally changes, one of the primary tasks is to analyse the cur-
rent structure of a site and the current ranks (importance) 
of its pages. This can help determine the effectiveness of 
advertisement posting in the next steps.

The questions of analysing the structure of sites and 
finding the ranks of their pages have been widely and fully 
covered in published studies, for example in [9, 10]. However, 
they are considered separately from each other there. It is as-
sumed that the structure of a site is analysed first, and then 
the ranks of its pages are determined. This approach leads to 
the fact that when working with multicore or multiprocessor 
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is that the rank of a page u  linearly depends on the ranks of 
the pages that refer to it:

( )
( ) ,

(v)
uv B

PR v
PR u

LÎ

= ∑   (1)

where PR(v) is the PageRank of a page v; L(v) is the total 
number of outbound links on the page v; Bu is the set of pages 
that refer to the page u.

Assuming that there is at least one reference to other 
pages on each page, equation (1) is a particular case of the 
vector equation [12]:

,Av v=   (2)

where v is the vector of the ranks of site pages:

T,A P=

P is the matrix of transitions of a dimension N N× , a non- 
negative matrix with coefficients:

 

deg(i) is the number of outbound links on the page i,

0ijp ≥  and 1,ij
j

p =∑

N is the number of pages on the site.
The solution of equation (2) is considered either as finding 

the eigenvector of the matrix A, corresponding to the maxi-
mum eigenvalue of this matrix equal to 1, or as a solution of 
the system of equations [12, 13]:

( ) 0,I A v− =   (3)

where I is an identity matrix.
From the theory of Markov homogeneous chains, where 

a similar graph model is used, it is known that equation (2) 
has a solution, and it is unique (within a multiplier) only if 
the graph is strongly coupled and aperiodic [9]. The second 
condition for web graphs is automatic. And the first con-
dition is not fulfilled if the site has the so-called ‘hanging’ 
pages – pages that do not have links to other pages. Hanging 
pages give zero rows in the matrix of transitions P and, ac-
cordingly, lead to its degeneracy.

The most popular approach for solving the problem of 
hanging pages is to modify the matrix P in such a way as if 
hanging pages contain transitions to all pages [9, 12, 13]:

' 1
,P P D

N
= +   (4)

where N is the total number of pages on the site; D is a matrix 
of the dimension ,N N×  whose i-th rows contain ones, and 
the remaining rows are zero for all i-numbered pages.

In addition to solving the problem of hanging pages to 
ensure strong coherence of the graph, another modification of 
the matrix of transitions is made – ‘teleportation.’ Physically, 

it is interpreted in the way as if a user who is on any page of the 
site follows, with a probability α, one of the links available on 
this page, and with a probability (1–α), goes to any other page:

'' ' (1 )
,P P J

N
− α

= α +   (5)

where J is a matrix with all elements equal to 1.
As a result, rank estimates are found from the solution of 

the modified equation (2):

'' ,A v v=   (6)

where v is the vector of the ranks of the site pages, '' '' T( ) .A P=
The whole set of approaches to solving equation (6) can 

be divided into two groups [14] – algebraic methods and 
iterative methods.

Iterative methods assume a consistent approximation 
to the desired estimate of the vector of ranks, producing 
iterations. One of the most popular iterative methods is the 
power method [15]:

1 '' ''

1
( ) / ,k k kv A v A v+ =   (7)

where vk is the estimate of the vector of ranks v at the k-th 
iteration; 

1 i
i

X x= ∑  

is the norm of the vector X, equal to the sum of the moduli 
of its components xi.

As the initial approximation, we take the vector v0, all 
elements of which are equal to 1/N. Calculations stop after 
reaching

1

1
,k kv v+ − ≤ δ   (8)

where δ is a small value.
To obtain faster estimates of ranks, either linear algebra 

methods [15, 16], such as LU decomposition and QR algo-
rithm, or the Jacobi, Lanczos, Arnoldi [17] and Gauss-Seidel 
methods are used. Or heuristic methods are involved. For 
example, the extrapolation method, which is based on the 
power-law method [18], or the Arnoldi method [19]; however, 
instead of computations on some iterations, there is simply 
extrapolation to obtain estimates of the next step. Or an 
adaptive method [20, 21] is used, which is based on the fact 
that the elements of the vector vk converge at different rates. 
Therefore, for the elements that have already practically 
converged and do not change, no calculations are made. In 
addition, a large number of studies are devoted to the accel-
eration of obtaining estimates by iterative methods due to 
their modification for calculating on multicore or multipro-
cessor computers [22–27].

For example, in [22], massive parallelism of GPUs is 
used to calculate PageRank, and in [23], a partitioning and 
compact representation of a site graph is proposed to match 
the memory size of single processors in an array of GPUs. 
In [24], a parallel algorithm for computing PageRank is 
proposed, based on the use of the distributed programming 
concept MapReduce and the list of contiguities in multipro-
cessor arrays. The load balancing capabilities in comparison 
with memory-based methods in the multiprocessor CUDA 
architecture are examined in [25]. In [26], a method is 

if  the ith page has 

a link to the jth page;

if the ith page does not have 

a link to the j

1



/ deg( ),  

0,

th page;
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proposed to accelerate the calculation of PageRank in the 
multiprocessor CUDA architecture by searching for special 
structures in the site graphs that allow parallelizing the com-
putations to the maximum number of threads. In work [27], 
it is suggested to accelerate the calculation of PageRank on 
distributed multiprocessor computers due to the use of the 
MapReduce concept and the Hadoop framework.

Algebraic methods presuppose an exact solution of equa-
tion (6) in the form [14] of

1
1 (1 )

,T Tv I P D e
N N

−
  − α = − α + ⋅    

  (9)

where e is a vector of a dimension N, all elements of which are 
equal to 1; I is the identity matrix of the size .N N×

In search programs with very large transition matrices, 
with N of the order of 107, iterative solutions of (2) are used 
with α=0.85…0.9, where α is also called the damping coeffi-
cient. The smaller the value of α, the higher the convergence 
rate of the iterative methods, but the less the accuracy of the 
solution for the page ranks in terms of formula (1) [12, 13, 28].

When verifying advertising companies, a particular web re-
source (site) is analysed; N usually does not exceed 4 510  ... 10 .  
It is, therefore, desirable to obtain the most accurate solution 
of formula (1). In addition, it should be noted that the solution 
of equation (6) by iterative methods usually begins only after 
the structure of the web resource is completely determined, 
that is, when the matrix P is known. At the same time, the by-
pass of the site graph (definition of its structure) is iteratively 
performed, and it takes a significant amount of time that could 
be used to calculate page ranks. This is especially true when all 
operations are performed on a powerful calculator containing a 
large number of cores or processors. Therefore, it is of interest 
to develop a method for calculating page ranks by an algebraic 
method [14] the volume of operations for which does not de-
pend on the proximity of α to 1 and which takes into account 
the features of the graph traversal algorithm.

3. The aim and objectives of the study

The aim of the study is to develop a method for calculat-
ing page ranks with an algebraic approach that takes into 
account the features of the graph traversal algorithm.

To achieve the aim, the following tasks are set and solved:
– to analyse the features of the algorithms for traversing 

graphs and to identify opportunities to reduce the amount 
of calculations, as well as to produce part of the calculations 
while the graph traversal algorithm is being used;

– to take into account the structural features of the tran-
sition matrix when constructing a step-by-step calculation 
of the ranks;

– to determine the order of the operations for the method 
obtained and to find the conditions under which the opera-
tions’ volume is smaller than with the iterative methods of 
determining the ranks.

4. Analysis of the features of graphs traversal algorithms

As the structure of websites dynamically changes with 
time, when verifying advertising companies, it is considered 
that this structure is a priori unknown and it is necessary to 
determine it, starting from the main page of a website.

Let us consider two main approaches to the construction 
of algorithms for traversing graphs [10]. These are a depth-
first search (DFS) algorithm and a breadth-first search 
(BFS) algorithm.

We represent the graph of the target site in the form of

( , ),G V E=

where V is the set of all pages of the site, or the set of all 
vertices of the graph G; E is the set of the pairs (u, v), where 

,u v VÎ  are connected by an edge of the graph G, that is, on 
the page u there is a link to the page v.

We assume that we know the initial vertex of the graph 
G v0,0 as the main page of the site.

The DFS algorithm is aimed at a maximally rapid 
movement into the interior of the graph G. Upon falling 
into some vertex of the graph wj, the algorithm forms 
a set of the vertices of the graph that it has already by 
passed, Dj:

1 { },j j jD D w−= +
 

1,2,3,  ...j =
 
 (10)

0 0{ },D w=  where 0 0,0.w v=

Next, we find the set of the vertices of the graph G to 
which there are links on the page wj:

,1 ,2{ , ,  ... }.j j jB b b=   (11)

From this set, we remove the vertices which the DFS 
algorithm has already bypassed:

( ).j j j jW B B D= − ∩   (12)

From the set Wj, by some rule (for example, the first out-
going link on the page), we select one vertex wj+1, into which 
the algorithm proceeds in the next step.

If the set Wj is empty, one step back is made to form a 
new set:

1
1 1 1( ),j j j jW B B D− − −= − ∩   (13)

and the vertex wj+1 is selected from it.
If the set 1

1jW −  is also empty, then it is necessary to roll 
back one more step and so on. The traversal of the graph is 
completed when it is impossible to form a nonempty set m

nW  
and to roll back to the initial vertex of the graph.

In contrast to the depth-first search (DFS) algorithm, 
the breadth-first search (BFS) algorithm involves sequential 
traversal of the graph over layers. By the i-th layer, we mean 
a subset Vi of vertices of the graph G spaced at the shortest 
distance to i edges from the vertex v0,0. If any of the j-th 
vertices of the i-th layer of the graph vi,j is hit, the BFS algo-
rithm generates a subset of the vertices of the graph that it 
has already bypassed – Pi,j:

, , , 1{ } ,i j i j i jP v P −= +  1,2,  ... ,j =   (14)

where 

,0 1, max ,i i j iP P −=  1,2,  ... ,i =  0,0 0,0 ,P v=

Jmaxi is the maximum index j for the vertex vi-1, j in the 
layer Vi-1.
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Further, the BFS algorithm finds all vertices of the 
graph G that are separated from the vertex vi,j at a distance 
of one edge:

, , 1 , 2{ ,  ,  ... },i j i j i jF f f=   (15)

the (i+1)-th layer of the vertices of the graph is made up of 
new detected vertices, separated from the vertices of the i-th 
layer at a distance of one edge: 

{ }1 , , , ,( ( )) : .i i j i j i j i j iV F F P v V+ = − ∀ Î∩   (16)

Bypassing of the graph by the BFS algorithm is termi-
nated when the next set Vi+1 is empty.

From the comparison of the DFS and BFS algorithms, 
it is clear that the breadth-first algorithm provides more 
ordered subsets of the graph’s vertices – layers. Moreover, 
proceeding from the rules of layer formation in the BFS 
algorithm, it is clear that the vertices of the i-th layer have 
references only to the vertices of the (i+1)-th layer and do 
not have references to the vertices of the (i+2), (i+3) or other 
layers. Therefore, when the vertices of the graph are ordered 
in layers by the BFS algorithm, the transition matrix P will 
be of a lower blockwise Hessenberg matrix type [29]. An 
example of the matrix P for eight layers is the following:

11 12                  

21 22 23                

31 32 33 34              

41 42 43 44              

55 56     51 52 53 54

65 66 67   61 62 63 64

75 76 7771 72 73 74

81 82 83 84

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0

A A

A A A

A A A A

A A A A
P

A AA A A A

A A AA A A A

A A A AA A A A

A A A A

=

78

85 86 87 88

.

A A A A

 
 
 
 
 
 
 
 
 
 
 
 

  (17)

The size of the matrix P is equal to ,N N×  where N is 
the total number of pages on the site (the number of verti-
ces in the site graph). Aij denotes blocks containing links 
between the vertices of the i-th layer and the vertices of the 
j-th layer. The size of each block Aij is equal to ,i jn n×  where 
ni is the number of vertices in the i-th layer of the graph, nj 
is the number of vertices in the j-th layer of the graph. Since 
the matrix of transitions for the BFS algorithm has a block 
view, and the Aij blocks, for which ( 2),j i≥ +  contain only 
zero elements, this can be used to develop an algorithm for 
calculating the page rank of the target site. In addition, it 
should be noted that the block view of the transition matrix 
P creates prerequisites for all calculations in the rank estima-
tion algorithm to have a block view. This helps parallelize ef-
ficiently the computations to threads for their processing 
by multicore and multiprocessor computing structures.

5. Development of a modified algorithm for estimating 
PageRank 

We assume that the BFS algorithm is used to bypass 
the graph of the target site. As a result, we obtain a ma-
trix of transitions P structured with layers.

To ensure the stability of the subsequent computa-
tional process as to (4) and (5), we similarly modify the 
transition matrix P as follows:

'' (1 )
,P P D J

N N
α − α

= α + +   (18)

where 0 1;< α <  J is a matrix of teleportation, with the size 
N N× , corresponding to the matrix of transitions P; all its 
elements standing in the places of blocks Aij ( 1),j i≤ +  are 
equal to 1, and all its elements standing in the places of zero 
blocks 1,j i> +  are equal to 0; D is a matrix with the size 

,N N×  which corresponds to the ‘hanging’ pages; for each 
‘hanging’ page (not having outgoing links) with a number 
m, the corresponding m-th row of the matrix D contains 
ones in the places corresponding to the blocks Aij with 

1,j i≤ +  and zeros in the places corresponding to the zero 
blocks ( 1),j i> +  and all other elements of the matrix D are 
equal to zero.

The PageRank vector v of the ranks is defined as the 
dominant eigenvector of the matrix where ( )'' T

A P= :

.Av v=   (19)

Taking into account (14), equation (15) is equivalent to 
the following:

1 (1 )
,T TI P D v e

N N

  − α − α + =    
  (20)

where e is a vector of a dimension N, all elements of 
which are equal to 1; I is the identity matrix of the size 

.N N×
The algebraic solution of (20) is defined as [12]

1
1 (1 )

.T Tv I P D e
N N

−
  − α = − α + ⋅    

  (21)

We introduce the notation for the matrix beeing invert-
ed, obtained at the k-th step of the operation of the BFS 
algorithm as follows:

1
,T T

k k k k
k

B I P D
N

 
= − α +  

  (22)

where the matrices Bk, Ik, Pk, and Dk have the dimensions 
of ;k kN N×  Nk is the total number of vertices of the graph 
obtained by the BFS algorithm in k steps.

1

.
k

k i
i

N n
=

= ∑   (23)

The matrix Bk, similarly to the form of the matrix P in 
(17) and taking into account the transposition, is the upper 
blockwise Hessenberg matrix:

11 12 13 1( 2) 1( 1) 1

21 22 23 2( 2) 2( 1) 2

32 33 3( 2) 3( 1) 3

( 2)( 2) ( 2)( 1) ( 2)

( 1)( 2) ( 1)( 1) ( 1)

. . .

. . .

0 . . .

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . .

0 0 0 . . .

k k k k k k
k k k

k k k k k k
k k k

k k k k k
k k k

k

k k k
k k k k k k

k k
k k k k k

C C C C C C

C C C C C C

C C C C C

B

C C C

C C C

− −

− −

− −

− − − − −

− − − − −

=

( 1)

. (24)

0 0 0 . . . 0

k
k

k k
k k kkC C−

 
 
 
 
 
 
 
 
 
 
 
 
 
  



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 ( 93 ) 2018

10

Then the matrix Bk+1 can be represented in the block 
form

1
11

1 ( 1)( 1)

,k k
kk

k k k

B
B

C
+

++
+ + +

Φ 
=  Θ 

  (25)

where the matrix 1k+Θ  has a dimension of 1 ,k kn N+ ×  and the 
matrix 1k+Φ  has a dimension of 1k kN n +× : 

1
1 ( 1)(0 0 0 ... ),k

k k kC +
+ +Θ =   (26)

( )T1 1 1
1 1( 1) 2( 1) ( 1)  ... .T k k k

k k k k kC C C+ + +
+ + + +Φ =   (27)

In accordance with the Frobenius theorem [29],

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1

1 1 1

,k k k k k k k k k
k

k k k k

B B H B B H
B

H B H

− − − − − −
− + + + + +
+ − − −

+ + +

 + Φ Θ Φ
=  − Θ 

  (28)

where

1 1
1 ( 1)( 1) 1 1.k

k k k k k kH C B+ −
+ + + + += − Θ Φ

Thus, expression (28) makes it possible to calculate, step-
by-step, the matrix 1

1kB−
+  and the grades of the graph vertices 

that have already been bypassed by the BFS algorithm, using 
equation (21). At each (k+1)-th step, it is necessary to invert 
only one matrix Hk+1 of the size 1 1.k kn n+ +×  All other operations 
are block multiplications and additions of the matrices. The 
total number of multiplication and addition operations to be 
performed at the (k+1)-th step is given in Table 1.

We also assume that 1k�  and 1 1.k kN n+ +�  Then the to-
tal number of multiplication operations at the (k+1)-th step 
is of the following order:

2
1 1 1( (2 1)).k k kU O N n+ + += × +   (29)

If we assume for simplicity that all ni are equal to each 
other and equal to n, then the total number of multiplica-
tions in the steps from 1 to k for calculating 1

kB−  is of the 
following order:

3 3
1

1

( 1) (2 1) 2
.

3 3

k

j k
j

k k k
U O n O N +

=

× + × +   = × =      ∑  (30)

The total number of additions has the same order.
For comparison, the total number of multiplications (sim-

ilarly, additions, too) of fast iterative methods [12, 28, 30]  
is of the order

( )2
1 ,FPR kU O L Nδ += ×   (31)

where Lδ is the number of iterations that must be done to 
achieve

1 ,L Lv v
δ δ −− ≤ δ   (32)

where vj is the estimate of the vector v at the j-th iteration.
For the typical values of 710 ,−δ =  0.85α =  and 10

1 10 ,kN + ∼  
the required number of iterations for iterative methods [30] is

50 ... 100Lδ = .

However, this number increases signifi-
cantly as α approaches 1 and the necessary δ 
decreases [30].

The exact PageRank value for the page 
u is determined by equation (1). The pa-
rameter α is introduced in (5) to regularize 
the resulting solution, and the closer it is 
to 1, the resulting solution is closer to the 
ideal value.

At the same time, the volume of calcu-
lations by the proposed algebraic method 
does not depend on α, and the accuracy of 
finding the ranks of the pages is determined 
only by the accuracy of the calculations.

It should be noted that iterative meth-
ods begin calculations when the site graph 
is fully known. At the same time, in accor-
dance with the proposed algebraic method, 
the amount of calculations specified in (30) 
can be made while the graph of the site 
is traversed by the BFS algorithm. After 
traversing the graph, only Uk+1 operations 
remain (formula (29)). Proceeding from a 
comparison of formulas (29) and (31), we 
obtain that for

1(2 1).kL nδ +> + ,  (33)

the proposed algebraic method requires less 
computation at the last iteration, which al-
lows getting the necessary PageRank values 
faster.

Table 1

The number of operations of multiplication and addition at the (k+1)-th step

Operation Multiplication Addition
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6. Discussion of the developed algebraic method for 
calculating PageRank values

The results obtained in this study are based on the fact 
that, in contrast to known works, the calculation of ranks 
is carried out simultaneously with using the algorithm for 
traversing the graph in breadth. Taking into account the 
structural features of the transition matrix obtained at each 
step of the algorithm for traversing the graph in breadth, it is 
possible to construct a step-by-step algorithm for calculating 
the ranks.

The advantage of the developed method of determining 
ranks is the independence of the volume of calculations 
from the damping coefficient. The proposed step-by-step 
calculation of rank estimates is oriented to multicore and 
multiprocessor architectures and allows more efficient use of 
the computing device.

The applicability of the developed method is limited to 
Internet sites or segments with the number of pages not 
exceeding 104 or 105. The spread of this method to segments 
of the Internet with a large number of pages requires further 
investigation of the peculiarities of the transition matrix in 
particular cases.

Estimates for the volumes of computations given in 
formulas (29) through (31) are upper estimates, since they 
assume that all the matrices involved in the computations 
are completely filled. On real websites, the number of links 
on one page usually does not exceed 5–10. Therefore, most of 
the elements in the matrices 1

( 1) ,k
k kC +

+  1
( 1)( 1),
k
k kC +

+ +  and 1k+Φ  have 
zero values, which drastically reduces the number of floating 
point operations that need to be performed.

It is also noteworthy that the proposed algebraic method 
of calculating PageRank at each step contains operations of 
addition and multiplication of matrix blocks of a small size 
and only one operation of inverting a matrix, again of a small 
size. This makes it easy to split the entire number of compu-
tations into parallel computational threads using multicore 
or multiprocessor computers.

7. Conclusions

1. The analysis of the algorithm for traversing the graphs 
of sites in depth did not reveal any features of the resulting 
matrix of transitions. At the same time, the algorithm for 
traversing the graphs of sites in breadth arranges the pages 
of the site into layers, which reduces the matrix of transitions 
to the blockwise Hessenberg type. The presence of a large 
number of zero blocks in such a matrix was taken into ac-
count when developing the algorithm for calculating ranks.

2. The algorithm for calculating the PageRank values is 
based on a step-by-step estimation of the inverse modified 
transition matrix on the basis of the Frobenius theorem on 
inversion of block matrices. At each step of the algorithm for 
traversing the site graph in breadth, there is a next layer of 
graph vertices and, accordingly, a step of the algorithm for 
computing the inverse transition matrix is performed.

3. The comparison of the computational volume for the 
new algebraic method and iterative methods has shown an 
advantage of the proposed method in situations where only 
one site or a relatively small segment of the Internet is ana-
lysed, and it is required to use a damping factor close to 1.
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