Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/15326
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorRudnichenko, N.-
dc.contributor.authorVychuzhanin, V.-
dc.contributor.authorOtradskya, T.-
dc.contributor.authorPetrov, I.-
dc.date.accessioned2025-05-28T16:26:09Z-
dc.date.available2025-05-28T16:26:09Z-
dc.date.issued2024-
dc.identifier.citationRudnichenko N. Information system module for analysis viral infections data based on machine learning / N. Rudnichenko, V. Vychuzhanin, T. Otradskya, I. Petrov // CEUR Workshop Proceedings, 3662, 2024. - 63-74.en
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/15326-
dc.description.abstractThe article presents results of the development information system module for analysis viral infections data. The relevance of the problem of automating the process of analyzing large volumes of data based on the use of intelligent technologies and machine learning methods is considered. The structure of the system has been developed and described, the results of design modeling of the key functionality and capabilities of the system based on the use of the UML language are presented, the basic components and technologies for implementing software are described, allowing for modularity and dynamic expandability of the potential for conducting data analysis research. The process of creating, training and testing the created machine learning models is detailed, the results of assessing the significance of the input features of the collected data set on viral diseases and the obtained values of the error matrices are described. The profiling of the operation process of the created models was carried out, the most productive and efficient of them were determined in terms of the consumption of computing resources and overall accuracy, taking into account their generalization abilityen
dc.language.isoen_USen
dc.subjectdata analysisen
dc.subjectdata visualizationen
dc.subjectmachine learningen
dc.subjectviral infectionsen
dc.subjectinformation systems developmenten
dc.titleInformation system module for analysis viral infections data based on machine learningen
dc.typeArticleen
opu.citation.firstpage63en
opu.citation.lastpage74en
Располагается в коллекциях:2024

Файлы этого ресурса:
Файл Описание РазмерФормат 
paper13.pdf1.55 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.