Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/15331
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShcherbakova, G.-
dc.contributor.authorAntoshchuk, S.-
dc.contributor.authorKoshutina, D.-
dc.contributor.authorSakhno, K.-
dc.date.accessioned2025-05-28T17:42:04Z-
dc.date.available2025-05-28T17:42:04Z-
dc.date.issued2024-
dc.identifier.citationShcherbakova G. Adaptive Clustering for Distribution Parameter Estimation in Technical Diagnostics / G. Shcherbakova, S. Antoshchuk, D. Koshutina, K. Sakhno // Proceedings of International Conference on Applied Innovation in IT, 12(1), 2024. - 123-128.en
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/15331-
dc.description.abstractA novel approach has been introduced to estimate the parameters of exponential and DN distributions during the rejection testing of electronic devices, accompanied by a detailed procedure for its implementation. This innovative method enhances noise immunity and minimizes the error associated with the rejection process through the application of a clustering technique involving wavelet transform. The effectiveness of the method has been verified using resistors, employing criteria such as noise level and stability. The substantial improvement in noise immunity and the reduction in rejection procedure errors are achieved by incorporating an adaptive clustering method coupled with wavelet transform. Notably, in clustering with a signal-to-noise ratio by amplitude of 1.17, the relative error in determining the minimum of the test function was reduced to 8.32%. These promising outcomes substantiate the recommendation of the developed method for the automated selection of resistors, particularly those designated for long-term operational equipment with critical applications. The presented method thus contributes significantly to enhancing the reliability and accuracy of electronic device testing and selection processes.en
dc.language.isoen_USen
dc.subjectASTDen
dc.subjectAutomated Systems for Technical Diagnosticsen
dc.subjectElectronic Componentsen
dc.subjectReliability Parametersen
dc.subjectAdaptive Clusteringen
dc.subjectWavelet Transformen
dc.subjectNoise Immunityen
dc.subjectRejection Systemsen
dc.subjectExponential Distributionen
dc.subjectDN Distributionen
dc.subjectSmall Dataen
dc.subjectNoisy Dataen
dc.subjectComplex ECsen
dc.subjectAccelerated Testsen
dc.subjectDegradation Processesen
dc.titleAdaptive Clustering for Distribution Parameter Estimation in Technical Diagnosticsen
dc.typeArticleen
opu.citation.firstpage123en
opu.citation.lastpage128en
Располагается в коллекциях:2024

Файлы этого ресурса:
Файл Описание РазмерФормат 
2_8_ICAIIT_2024_Part_2_paper_6.pdf761.35 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.