Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://dspace.opu.ua/jspui/handle/123456789/15354
Название: | Diagnosis intellectualization of complex technical systems |
Авторы: | Vychuzhanin, Volodymyr Rudnichenko, Mykola Vychuzhanin, Oleksii Rychlik, Andrzej |
Ключевые слова: | technical condition complex technical system risk of failure diagnostics forecasting intelligent system Bayesian belief network insensitivity to incomplete data |
Дата публикации: | 2023 |
Издательство: | CEUR-WS |
Библиографическое описание: | Vychuzhanin, V., Rudnichenko, M., Vychuzhanin, O., Rychlik, A. (2023). Diagnosis intellectualization of complex technical systems. CEUR Workshop Proceedings, Volume 3513, P. 352-362. |
Краткий осмотр (реферат): | The article presents the results of developing a model for diagnosing a ship complex technical system with incomplete data and its implementation in an intelligent system for assessing the risk of failures of subsystems, components, intercomponent links, which allows obtaining a priori information about the technical condition of a complex system. Types of technical condition of subsystems, components, intercomponent connections are determined on the basis of diagnostic features of a complex system using the example of a ship power plant to assess the risk of their failures. Predicting the type of technical state of a complex technical system was carried out using a posteriori inference in Bayesian belief networks. The studies presented in the article assessed the risk of failures as a result of the use of an intelligent system for diagnosing and predicting the risk of failures of a ship complex technical system. The model for diagnosing and predicting the risk of failures of subsystems, components, interconnections can be considered as a conceptual model of an intelligent system for diagnosing and predicting the risk of failures of complex technical systems on network infrastructures, which has a relative insensitivity to incomplete technological data. |
URI (Унифицированный идентификатор ресурса): | http://dspace.opu.ua/jspui/handle/123456789/15354 |
ISSN: | 16130073 |
Располагается в коллекциях: | 2023 |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
paper29.pdf | 731.16 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.