Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/14852
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorEID, WAFA M.-
dc.contributor.authorALOTAIBI, SARAH S.-
dc.contributor.authorALQAHTANI, HASNA M.-
dc.contributor.authorSALEH, SAHAR Q.-
dc.date.accessioned2025-01-22T13:01:40Z-
dc.date.available2025-01-22T13:01:40Z-
dc.date.issued2019-
dc.identifier.citationWAFA M. EID. Digital Image Steganalysis: Current Methodologies and Future Challenges / WAFA M. EID, SARAH S. ALOTAIBI, HASNA M. ALQAHTANI, SAHAR Q. SALEH // Academy of Accounting and Financial Studies Journal Volume 18, Issue 4, 2019en
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/14852-
dc.description.abstractWith the growing use of the internet and social media, data security has become a major issue. Thus, researchers are focusing on data security techniques such as steganography and steganalysis. Steganography is the approach of concealing the existence of secret messages in digital media for secure transmission. Steganalysis techniques aim to detect the existence of concealed messages and extract them. Digital image steganography and steganalysis techniques are classified into the spatial and transform domains. In this paper, we provide a detailed survey of the state-of-the-art works that have been performed in two-dimensional and three-dimensional image steganalysis. We present the most popular datasets and explain some steganographic methods for embedding hidden data. Steganalysis is a very difficult task due to the lack of information about the characteristics of the cover media that can be exploited to detect hidden messages. Therefore, we review studies performed on image steganalysis in the spatial and transform domains using classical machine learning and deep learning approaches. Additionally, we present open challenges and discuss some directions for future research.en
dc.language.isoenen
dc.subjectSteganographyen
dc.subjectsteganalysisen
dc.subjectdeep learningen
dc.subjectmachine learningen
dc.titleDigital Image Steganalysis: Current Methodologies and Future Challengesen
dc.typeArticleen
opu.citation.journalAcademy of Accounting and Financial Studies Journalen
opu.citation.issueVolume 18, Issue 4, 2019en
Располагается в коллекциях:2019

Файлы этого ресурса:
Файл Описание РазмерФормат 
Digital_Image_Steganalysis_Current_Methodologies_a.pdf7.84 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.